User:Nikhil Malvankar/Cytochrome nanowires
From Proteopedia
(Difference between revisions)
| Line 93: | Line 93: | ||
Cells with the ''omcS'' gene deleted (''ΔomcS'') produced thinner (~1.7 nm) filaments that were smooth (not sinusoidal) and had electrical conductivity >100-fold lower than the OmcS filaments. ''ΔomcS'' cells can produce electrically conductive biofilms, but that conductivity might well depend on filaments of OmcZ, whose expression is known to increase in ''ΔomcS'' cells. | Cells with the ''omcS'' gene deleted (''ΔomcS'') produced thinner (~1.7 nm) filaments that were smooth (not sinusoidal) and had electrical conductivity >100-fold lower than the OmcS filaments. ''ΔomcS'' cells can produce electrically conductive biofilms, but that conductivity might well depend on filaments of OmcZ, whose expression is known to increase in ''ΔomcS'' cells. | ||
| - | Previous studies showed that PilA is required for export of OmcS. However, PilA was not found in the filaments studied here. Thus, PilA may be required for production of OmcS filaments, but not be a structural component of those filaments. | + | Previous studies showed that PilA is required for export of OmcS. However, PilA was not found in the composition of the OmcS filaments studied here. Thus, PilA may be required for production of OmcS filaments, but not be a structural component of those filaments. |
</StructureSection> | </StructureSection> | ||
Revision as of 15:10, 15 February 2020
Interactive 3D Complement in Proteopedia
![]()
Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers[1].
Fengbin Wang,
Yanqui Gu,
J. Patrick O'Brien,
Sophia M. Yi,
Sibel Ebru Yalcin,
Vishok Srikanth,
Cong Shen,
Dennis Vu,
Nicole L. Ing,
Allon I. Hochbaum,
Edward H. Egelman,
and
Nikhil S. Malvankar.
Cell 177:361-9,
April 4, 2019. doi:10.1016/j.cell.2019.03.029
Contents |
Structure Tour
| |||||||||||
Download
Animations for Powerpoint
Click images to see them full size, or to download them.
See Also
- Malvankar: A list of all interactive 3D complements for publications from the Malvankar group.
Notes & References
- ↑ 1.0 1.1 1.2 1.3 Wang F, Gu Y, O'Brien JP, Yi SM, Yalcin SE, Srikanth V, Shen C, Vu D, Ing NL, Hochbaum AI, Egelman EH, Malvankar NS. Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers. Cell. 2019 Apr 4;177(2):361-369.e10. doi: 10.1016/j.cell.2019.03.029. PMID:30951668 doi:http://dx.doi.org/10.1016/j.cell.2019.03.029
- ↑ 2.0 2.1 Filman DJ, Marino SF, Ward JE, Yang L, Mester Z, Bullitt E, Lovley DR, Strauss M. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Commun Biol. 2019 Jun 19;2(1):219. doi: 10.1038/s42003-019-0448-9. PMID:31925024 doi:http://dx.doi.org/10.1038/s42003-019-0448-9
- ↑ 3.0 3.1 3.2 3.3 3.4 Pace CN, Grimsley GR, Scholtz JM. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J Biol Chem. 2009 May 15;284(20):13285-9. doi: 10.1074/jbc.R800080200. Epub 2009 , Jan 21. PMID:19164280 doi:http://dx.doi.org/10.1074/jbc.R800080200
- ↑ 4.0 4.1 Kajander T, Kahn PC, Passila SH, Cohen DC, Lehtio L, Adolfsen W, Warwicker J, Schell U, Goldman A. Buried charged surface in proteins. Structure. 2000 Nov 15;8(11):1203-14. PMID:11080642


