6xyy

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 6xyy is ON HOLD until Paper Publication
+
==Update of ACHE FROM DROSOPHILA MELANOGASTER COMPLEX WITH TACRINE DERIVATIVE 9-(3-PHENYLMETHYLAMINO)-1,2,3,4-TETRAHYDROACRIDINE==
 +
<StructureSection load='6xyy' size='340' side='right'caption='[[6xyy]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[6xyy]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6XYY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6XYY FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=760:9-(3-PHENYLMETHYLAMINO)-1,2,3,4-TETRAHYDROACRIDINE'>760</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PPI:PROPANOIC+ACID'>PPI</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
 +
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1dx4|1dx4]], [[6xys|6xys]], [[6xyu|6xyu]]</td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Acetylcholinesterase Acetylcholinesterase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.1.7 3.1.1.7] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6xyy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6xyy OCA], [http://pdbe.org/6xyy PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6xyy RCSB], [http://www.ebi.ac.uk/pdbsum/6xyy PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6xyy ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/ACES_DROME ACES_DROME]] Rapidly hydrolyzes choline released into the synapse. It can hydrolyze butyrylthiocholine.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Over recent decades, crystallographic software for data processing and structure refinement has improved dramatically, resulting in more accurate and detailed crystal structures. It is, therefore, sometimes valuable to have a second look at "old" diffraction data, especially when earlier interpretation of the electron density maps was rather difficult. Here, we present updated crystal structures of Drosophila melanogaster acetylcholinesterase (DmAChE) originally published in [Harel et al., Prot Sci (2000) 9:1063-1072], which reveal features previously unnoticed. Thus, previously unmodeled density in the native active site can be interpreted as stable acetylation of the catalytic serine. Similarly, a strong density in the DmAChE/ZA complex originally attributed to a sulfate ion is better interpreted as a small molecule that is covalently bound. This small molecule can be modeled as either a propionate or a glycinate. The complex is reminiscent of the carboxylate butyrylcholinesterase complexes observed in crystal structures of human butyrylcholinesterases from various sources, and demonstrates the remarkable ability of cholinesterases to stabilize covalent complexes with carboxylates. A very strong peak of density (10 sigma) at covalent distance from the Cbeta of the catalytic serine is present in the DmAChE/ZAI complex. This can be undoubtedly attributed to an iodine atom, suggesting an unanticipated iodo/hydroxyl exchange between Ser238 and the inhibitor, possibly driven by the intense X-ray irradiation. Finally, the binding of tacrine-derived inhibitors, such as ZA (1DX4) or the iodinated analog, ZAI (1QON) results in the appearance of an open channel that connects the base of the active-site gorge to the solvent. This channel, which arises due to the absence of the conserved tyrosine present in vertebrate cholinesterases, could be exploited to design inhibitors specific to insect cholinesterases. The present study demonstrates that updated processing of older diffraction images, and the re-refinement of older diffraction data, can produce valuable information that could not be detected in the original analysis, and strongly supports the preservation of the diffraction images in public data banks.
-
Authors: Nachon, F., Sussman, J.L.
+
A Second Look at the Crystal Structures of Drosophila melanogaster Acetylcholinesterase in Complex with Tacrine Derivatives Provides Insights Concerning Catalytic Intermediates and the Design of Specific Insecticides.,Nachon F, Rosenberry TL, Silman I, Sussman JL Molecules. 2020 Mar 6;25(5). pii: molecules25051198. doi:, 10.3390/molecules25051198. PMID:32155891<ref>PMID:32155891</ref>
-
Description: Update of ACHE FROM DROSOPHILA MELANOGASTER COMPLEX WITH TACRINE DERIVATIVE 9-(3-PHENYLMETHYLAMINO)-1,2,3,4-TETRAHYDROACRIDINE
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 6xyy" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Acetylcholinesterase]]
 +
[[Category: Large Structures]]
[[Category: Nachon, F]]
[[Category: Nachon, F]]
-
[[Category: Sussman, J.L]]
+
[[Category: Sussman, J L]]
 +
[[Category: Complex]]
 +
[[Category: Hydrolase]]
 +
[[Category: Inhibitor]]
 +
[[Category: Insect]]

Revision as of 10:04, 18 March 2020

Update of ACHE FROM DROSOPHILA MELANOGASTER COMPLEX WITH TACRINE DERIVATIVE 9-(3-PHENYLMETHYLAMINO)-1,2,3,4-TETRAHYDROACRIDINE

PDB ID 6xyy

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools