|
|
Line 3: |
Line 3: |
| <StructureSection load='6ii6' size='340' side='right'caption='[[6ii6]], [[Resolution|resolution]] 2.10Å' scene=''> | | <StructureSection load='6ii6' size='340' side='right'caption='[[6ii6]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6ii6]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_27562 Atcc 27562] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6II6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6II6 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6ii6]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Vibrio_vulnificus Vibrio vulnificus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6II6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6II6 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rtxA1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=672 ATCC 27562]), ARF3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ii6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ii6 OCA], [https://pdbe.org/6ii6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ii6 RCSB], [https://www.ebi.ac.uk/pdbsum/6ii6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ii6 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ii6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ii6 OCA], [http://pdbe.org/6ii6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ii6 RCSB], [http://www.ebi.ac.uk/pdbsum/6ii6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ii6 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/ARF3_HUMAN ARF3_HUMAN]] GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP-ribosyltransferase. Involved in protein trafficking; may modulate vesicle budding and uncoating within the Golgi apparatus. | + | [https://www.uniprot.org/uniprot/F1CLG9_VIBVL F1CLG9_VIBVL] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 27562]] | + | [[Category: Homo sapiens]] |
- | [[Category: Human]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Choi, S]] | + | [[Category: Vibrio vulnificus]] |
- | [[Category: Eom, S H]] | + | [[Category: Choi S]] |
- | [[Category: Hwang, J]] | + | [[Category: Eom SH]] |
- | [[Category: Hyun, J]] | + | [[Category: Hwang J]] |
- | [[Category: Kim, B S]] | + | [[Category: Hyun J]] |
- | [[Category: Kim, M H]] | + | [[Category: Kim BS]] |
- | [[Category: Kwon, Y]] | + | [[Category: Kim MH]] |
- | [[Category: Lee, C]] | + | [[Category: Kwon Y]] |
- | [[Category: Lee, E Y]] | + | [[Category: Lee C]] |
- | [[Category: Lee, Y]] | + | [[Category: Lee EY]] |
- | [[Category: Park, S]] | + | [[Category: Lee Y]] |
- | [[Category: Arf3]]
| + | [[Category: Park S]] |
- | [[Category: Effector domain]]
| + | |
- | [[Category: Martx toxin]]
| + | |
- | [[Category: Mcf]]
| + | |
- | [[Category: Toxin]]
| + | |
- | [[Category: Toxin-host protein complex]]
| + | |
- | [[Category: Toxin-protein binding complex]]
| + | |
| Structural highlights
Function
F1CLG9_VIBVL
Publication Abstract from PubMed
Upon invading target cells, multifunctional autoprocessing repeats-in-toxin (MARTX) toxins secreted by bacterial pathogens release their disease-related modularly structured effector domains. However, it is unclear how a diverse repertoire of effector domains within these toxins are processed and activated. Here, we report that Makes caterpillars floppy-like effector (MCF)-containing MARTX toxins require ubiquitous ADP-ribosylation factor (ARF) proteins for processing and activation of intermediate effector modules, which localize in different subcellular compartments following limited processing of holo effector modules by the internal cysteine protease. Effector domains structured tandemly with MCF in intermediate modules become disengaged and fully activated by MCF, which aggressively interacts with ARF proteins present at the same location as intermediate modules and is converted allosterically into a catalytically competent protease. MCF-mediated effector processing leads ultimately to severe virulence in mice via an MCF-mediated ARF switching mechanism across subcellular compartments. This work provides insight into how bacteria take advantage of host systems to induce systemic pathogenicity.
Makes caterpillars floppy-like effector-containing MARTX toxins require host ADP-ribosylation factor (ARF) proteins for systemic pathogenicity.,Lee Y, Kim BS, Choi S, Lee EY, Park S, Hwang J, Kwon Y, Hyun J, Lee C, Kim JF, Eom SH, Kim MH Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18031-18040. doi:, 10.1073/pnas.1905095116. Epub 2019 Aug 19. PMID:31427506[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Lee Y, Kim BS, Choi S, Lee EY, Park S, Hwang J, Kwon Y, Hyun J, Lee C, Kim JF, Eom SH, Kim MH. Makes caterpillars floppy-like effector-containing MARTX toxins require host ADP-ribosylation factor (ARF) proteins for systemic pathogenicity. Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18031-18040. doi:, 10.1073/pnas.1905095116. Epub 2019 Aug 19. PMID:31427506 doi:http://dx.doi.org/10.1073/pnas.1905095116
|