|
|
Line 3: |
Line 3: |
| <StructureSection load='6r4i' size='340' side='right'caption='[[6r4i]], [[Resolution|resolution]] 2.59Å' scene=''> | | <StructureSection load='6r4i' size='340' side='right'caption='[[6r4i]], [[Resolution|resolution]] 2.59Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6r4i]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6R4I OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6R4I FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6r4i]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6R4I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6R4I FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=G6Q:GLUCOSE-6-PHOSPHATE'>G6Q</scene>, <scene name='pdbligand=GLU:GLUTAMIC+ACID'>GLU</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.586Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFPT1, GFAT, GFPT ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=G6Q:GLUCOSE-6-PHOSPHATE'>G6Q</scene>, <scene name='pdbligand=GLU:GLUTAMIC+ACID'>GLU</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutamine--fructose-6-phosphate_transaminase_(isomerizing) Glutamine--fructose-6-phosphate transaminase (isomerizing)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.16 2.6.1.16] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6r4i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6r4i OCA], [https://pdbe.org/6r4i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6r4i RCSB], [https://www.ebi.ac.uk/pdbsum/6r4i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6r4i ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6r4i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6r4i OCA], [http://pdbe.org/6r4i PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6r4i RCSB], [http://www.ebi.ac.uk/pdbsum/6r4i PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6r4i ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/GFPT1_HUMAN GFPT1_HUMAN]] Defects in GFPT1 are the cause of myasthenia, congenital, with tubular aggregates, type 1 (CMSTA1) [MIM:[http://omim.org/entry/610542 610542]]. A congenital myasthenic syndrome characterized by onset of proximal muscle weakness in the first decade. Individuals with this condition have a recognizable pattern of weakness of shoulder and pelvic girdle muscles, and sparing of ocular or facial muscles. EMG classically shows a decremental response to repeated nerve stimulation, a sign of neuromuscular junction dysfunction. Affected individuals show a favorable response to acetylcholinesterase (AChE) inhibitors.<ref>PMID:21310273</ref> | + | [https://www.uniprot.org/uniprot/GFPT1_HUMAN GFPT1_HUMAN] Defects in GFPT1 are the cause of myasthenia, congenital, with tubular aggregates, type 1 (CMSTA1) [MIM:[https://omim.org/entry/610542 610542]. A congenital myasthenic syndrome characterized by onset of proximal muscle weakness in the first decade. Individuals with this condition have a recognizable pattern of weakness of shoulder and pelvic girdle muscles, and sparing of ocular or facial muscles. EMG classically shows a decremental response to repeated nerve stimulation, a sign of neuromuscular junction dysfunction. Affected individuals show a favorable response to acetylcholinesterase (AChE) inhibitors.<ref>PMID:21310273</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GFPT1_HUMAN GFPT1_HUMAN]] Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. | + | [https://www.uniprot.org/uniprot/GFPT1_HUMAN GFPT1_HUMAN] Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 21: |
| </div> | | </div> |
| <div class="pdbe-citations 6r4i" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6r4i" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Aminotransferase 3D structures|Aminotransferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Allmeroth, K]] | + | [[Category: Allmeroth K]] |
- | [[Category: Baumann, U]] | + | [[Category: Baumann U]] |
- | [[Category: Denzel, M S]] | + | [[Category: Denzel MS]] |
- | [[Category: Horn, M]] | + | [[Category: Horn M]] |
- | [[Category: Pichlo, C]] | + | [[Category: Pichlo C]] |
- | [[Category: Ruegenberg, S]] | + | [[Category: Ruegenberg S]] |
- | [[Category: Gfat]]
| + | |
- | [[Category: Glutamine fructose-6-phosphate aminotransferase]]
| + | |
- | [[Category: Ntn hydrolase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Disease
GFPT1_HUMAN Defects in GFPT1 are the cause of myasthenia, congenital, with tubular aggregates, type 1 (CMSTA1) [MIM:610542. A congenital myasthenic syndrome characterized by onset of proximal muscle weakness in the first decade. Individuals with this condition have a recognizable pattern of weakness of shoulder and pelvic girdle muscles, and sparing of ocular or facial muscles. EMG classically shows a decremental response to repeated nerve stimulation, a sign of neuromuscular junction dysfunction. Affected individuals show a favorable response to acetylcholinesterase (AChE) inhibitors.[1]
Function
GFPT1_HUMAN Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins.
Publication Abstract from PubMed
Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies.
Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis.,Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS Nat Commun. 2020 Feb 4;11(1):687. doi: 10.1038/s41467-020-14524-5. PMID:32019926[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Senderek J, Muller JS, Dusl M, Strom TM, Guergueltcheva V, Diepolder I, Laval SH, Maxwell S, Cossins J, Krause S, Muelas N, Vilchez JJ, Colomer J, Mallebrera CJ, Nascimento A, Nafissi S, Kariminejad A, Nilipour Y, Bozorgmehr B, Najmabadi H, Rodolico C, Sieb JP, Steinlein OK, Schlotter B, Schoser B, Kirschner J, Herrmann R, Voit T, Oldfors A, Lindbergh C, Urtizberea A, von der Hagen M, Hubner A, Palace J, Bushby K, Straub V, Beeson D, Abicht A, Lochmuller H. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet. 2011 Feb 11;88(2):162-72. doi: 10.1016/j.ajhg.2011.01.008. PMID:21310273 doi:10.1016/j.ajhg.2011.01.008
- ↑ Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun. 2020 Feb 4;11(1):687. doi: 10.1038/s41467-020-14524-5. PMID:32019926 doi:http://dx.doi.org/10.1038/s41467-020-14524-5
|