2kmx

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='2kmx' size='340' side='right'caption='[[2kmx]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
<StructureSection load='2kmx' size='340' side='right'caption='[[2kmx]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[2kmx]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KMX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2KMX FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[2kmx]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KMX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KMX FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene></td></tr>
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene></td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2kmv|2kmv]]</td></tr>
+
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2kmv|2kmv]]</div></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Copper-exporting_ATPase Copper-exporting ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.4 3.6.3.4] </span></td></tr>
+
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Copper-exporting_ATPase Copper-exporting ATPase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.4 3.6.3.4] </span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2kmx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kmx OCA], [http://pdbe.org/2kmx PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2kmx RCSB], [http://www.ebi.ac.uk/pdbsum/2kmx PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2kmx ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2kmx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kmx OCA], [https://pdbe.org/2kmx PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2kmx RCSB], [https://www.ebi.ac.uk/pdbsum/2kmx PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2kmx ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/ATP7A_HUMAN ATP7A_HUMAN]] Defects in ATP7A are the cause of Menkes disease (MNKD) [MIM:[http://omim.org/entry/309400 309400]]; also known as kinky hair disease. MNKD is an X-linked recessive disorder of copper metabolism characterized by generalized copper deficiency. MNKD results in progressive neurodegeneration and connective-tissue disturbances: focal cerebral and cerebellar degeneration, early growth retardation, peculiar hair, hypopigmentation, cutis laxa, vascular complications and death in early childhood. The clinical features result from the dysfunction of several copper-dependent enzymes.<ref>PMID:10079817</ref> <ref>PMID:7977350</ref> <ref>PMID:8981948</ref> <ref>PMID:10401004</ref> <ref>PMID:10319589</ref> <ref>PMID:11241493</ref> <ref>PMID:11350187</ref> <ref>PMID:15981243</ref> <ref>PMID:22992316</ref> Defects in ATP7A are the cause of occipital horn syndrome (OHS) [MIM:[http://omim.org/entry/304150 304150]]; also known as X-linked cutis laxa. OHS is an X-linked recessive disorder of copper metabolism. Common features are unusual facial appearance, skeletal abnormalities, chronic diarrhea and genitourinary defects. The skeletal abnormalities included occipital horns, short, broad clavicles, deformed radii, ulnae and humeri, narrowing of the rib cage, undercalcified long bones with thin cortical walls and coxa valga.<ref>PMID:9246006</ref> <ref>PMID:17108763</ref> Defects in ATP7A are a cause of distal spinal muscular atrophy X-linked type 3 (DSMAX3) [MIM:[http://omim.org/entry/300489 300489]]. DSMAX3 is a neuromuscular disorder. Distal spinal muscular atrophy, also known as distal hereditary motor neuronopathy, represents a heterogeneous group of neuromuscular disorders caused by selective degeneration of motor neurons in the anterior horn of the spinal cord, without sensory deficit in the posterior horn. The overall clinical picture consists of a classical distal muscular atrophy syndrome in the legs without clinical sensory loss. The disease starts with weakness and wasting of distal muscles of the anterior tibial and peroneal compartments of the legs. Later on, weakness and atrophy may expand to the proximal muscles of the lower limbs and/or to the distal upper limbs.<ref>PMID:20170900</ref>
+
[[https://www.uniprot.org/uniprot/ATP7A_HUMAN ATP7A_HUMAN]] Defects in ATP7A are the cause of Menkes disease (MNKD) [MIM:[https://omim.org/entry/309400 309400]]; also known as kinky hair disease. MNKD is an X-linked recessive disorder of copper metabolism characterized by generalized copper deficiency. MNKD results in progressive neurodegeneration and connective-tissue disturbances: focal cerebral and cerebellar degeneration, early growth retardation, peculiar hair, hypopigmentation, cutis laxa, vascular complications and death in early childhood. The clinical features result from the dysfunction of several copper-dependent enzymes.<ref>PMID:10079817</ref> <ref>PMID:7977350</ref> <ref>PMID:8981948</ref> <ref>PMID:10401004</ref> <ref>PMID:10319589</ref> <ref>PMID:11241493</ref> <ref>PMID:11350187</ref> <ref>PMID:15981243</ref> <ref>PMID:22992316</ref> Defects in ATP7A are the cause of occipital horn syndrome (OHS) [MIM:[https://omim.org/entry/304150 304150]]; also known as X-linked cutis laxa. OHS is an X-linked recessive disorder of copper metabolism. Common features are unusual facial appearance, skeletal abnormalities, chronic diarrhea and genitourinary defects. The skeletal abnormalities included occipital horns, short, broad clavicles, deformed radii, ulnae and humeri, narrowing of the rib cage, undercalcified long bones with thin cortical walls and coxa valga.<ref>PMID:9246006</ref> <ref>PMID:17108763</ref> Defects in ATP7A are a cause of distal spinal muscular atrophy X-linked type 3 (DSMAX3) [MIM:[https://omim.org/entry/300489 300489]]. DSMAX3 is a neuromuscular disorder. Distal spinal muscular atrophy, also known as distal hereditary motor neuronopathy, represents a heterogeneous group of neuromuscular disorders caused by selective degeneration of motor neurons in the anterior horn of the spinal cord, without sensory deficit in the posterior horn. The overall clinical picture consists of a classical distal muscular atrophy syndrome in the legs without clinical sensory loss. The disease starts with weakness and wasting of distal muscles of the anterior tibial and peroneal compartments of the legs. Later on, weakness and atrophy may expand to the proximal muscles of the lower limbs and/or to the distal upper limbs.<ref>PMID:20170900</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/ATP7A_HUMAN ATP7A_HUMAN]] May supply copper to copper-requiring proteins within the secretory pathway, when localized in the trans-Golgi network. Under conditions of elevated extracellular copper, it relocalized to the plasma membrane where it functions in the efflux of copper from cells.
+
[[https://www.uniprot.org/uniprot/ATP7A_HUMAN ATP7A_HUMAN]] May supply copper to copper-requiring proteins within the secretory pathway, when localized in the trans-Golgi network. Under conditions of elevated extracellular copper, it relocalized to the plasma membrane where it functions in the efflux of copper from cells.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]

Revision as of 07:07, 1 December 2021

Solution structure of the nucleotide binding domain of the human Menkes protein in the ATP-bound form

PDB ID 2kmx

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools