<table><tr><td colspan='2'>[[3jc7]] is a 11 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JC7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3JC7 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3jc7]] is a 11 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JC7 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=3JC7 FirstGlance]. <br>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA_helicase DNA helicase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.12 3.6.4.12] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA_helicase DNA helicase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.12 3.6.4.12] </span></td></tr>
3jc7 is a 11 chain structure with sequence from Atcc 18824. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
[MCM7_YEAST] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.[1][2] [PSF3_YEAST] Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery.[UniProtKB:P40359][3] [MCM4_YEAST] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for S phase execution.[4][5] [CDC45_YEAST] Required for initiation of chromosomal DNA replication. Acts at the origin of replication. Also has a role in minichromosome maintenance.[6][7] [PSF2_YEAST] Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery.[8] [MCM3_YEAST] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.[9][10] [SLD5_YEAST] Required for DNA replication. Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery.[11] [UniProtKB:P40359] [MCM2_YEAST] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.[12][13] [MCM5_YEAST] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.[14][15] [PSF1_YEAST] Required for DNA replication. Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery. Required for the chromatin binding of CDC45.[16] [MCM6_YEAST] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for the entry in S phase and for cell division.[17][18]
Publication Abstract from PubMed
The CMG helicase is composed of Cdc45, Mcm2-7 and GINS. Here we report the structure of the Saccharomyces cerevisiae CMG, determined by cryo-EM at a resolution of 3.7-4.8 A. The structure reveals that GINS and Cdc45 scaffold the N tier of the helicase while enabling motion of the AAA+ C tier. CMG exists in two alternating conformations, compact and extended, thus suggesting that the helicase moves like an inchworm. The N-terminal regions of Mcm2-7, braced by Cdc45-GINS, form a rigid platform upon which the AAA+ C domains make longitudinal motions, nodding up and down like an oil-rig pumpjack attached to a stable platform. The Mcm ring is remodeled in CMG relative to the inactive Mcm2-7 double hexamer. The Mcm5 winged-helix domain is inserted into the central channel, thus blocking entry of double-stranded DNA and supporting a steric-exclusion DNA-unwinding model.
Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation.,Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O'Donnell ME, Li H Nat Struct Mol Biol. 2016 Feb 8. doi: 10.1038/nsmb.3170. PMID:26854665[19]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
↑ Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009 Nov 13;139(4):719-30. doi: 10.1016/j.cell.2009.10.015. Epub 2009 Nov, 5. PMID:19896182 doi:http://dx.doi.org/10.1016/j.cell.2009.10.015
↑ Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20240-5. doi:, 10.1073/pnas.0911500106. Epub 2009 Nov 12. PMID:19910535 doi:http://dx.doi.org/10.1073/pnas.0911500106
↑ Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003 May 1;17(9):1153-65. PMID:12730134 doi:http://dx.doi.org/10.1101/gad.1065903
↑ Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009 Nov 13;139(4):719-30. doi: 10.1016/j.cell.2009.10.015. Epub 2009 Nov, 5. PMID:19896182 doi:http://dx.doi.org/10.1016/j.cell.2009.10.015
↑ Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20240-5. doi:, 10.1073/pnas.0911500106. Epub 2009 Nov 12. PMID:19910535 doi:http://dx.doi.org/10.1073/pnas.0911500106
↑ Hopwood B, Dalton S. Cdc45p assembles into a complex with Cdc46p/Mcm5p, is required for minichromosome maintenance, and is essential for chromosomal DNA replication. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12309-14. PMID:8901577
↑ Zou L, Mitchell J, Stillman B. CDC45, a novel yeast gene that functions with the origin recognition complex and Mcm proteins in initiation of DNA replication. Mol Cell Biol. 1997 Feb;17(2):553-63. PMID:9001208
↑ Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003 May 1;17(9):1153-65. PMID:12730134 doi:http://dx.doi.org/10.1101/gad.1065903
↑ Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009 Nov 13;139(4):719-30. doi: 10.1016/j.cell.2009.10.015. Epub 2009 Nov, 5. PMID:19896182 doi:http://dx.doi.org/10.1016/j.cell.2009.10.015
↑ Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20240-5. doi:, 10.1073/pnas.0911500106. Epub 2009 Nov 12. PMID:19910535 doi:http://dx.doi.org/10.1073/pnas.0911500106
↑ Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003 May 1;17(9):1153-65. PMID:12730134 doi:http://dx.doi.org/10.1101/gad.1065903
↑ Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009 Nov 13;139(4):719-30. doi: 10.1016/j.cell.2009.10.015. Epub 2009 Nov, 5. PMID:19896182 doi:http://dx.doi.org/10.1016/j.cell.2009.10.015
↑ Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20240-5. doi:, 10.1073/pnas.0911500106. Epub 2009 Nov 12. PMID:19910535 doi:http://dx.doi.org/10.1073/pnas.0911500106
↑ Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009 Nov 13;139(4):719-30. doi: 10.1016/j.cell.2009.10.015. Epub 2009 Nov, 5. PMID:19896182 doi:http://dx.doi.org/10.1016/j.cell.2009.10.015
↑ Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20240-5. doi:, 10.1073/pnas.0911500106. Epub 2009 Nov 12. PMID:19910535 doi:http://dx.doi.org/10.1073/pnas.0911500106
↑ Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003 May 1;17(9):1153-65. PMID:12730134 doi:http://dx.doi.org/10.1101/gad.1065903
↑ Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009 Nov 13;139(4):719-30. doi: 10.1016/j.cell.2009.10.015. Epub 2009 Nov, 5. PMID:19896182 doi:http://dx.doi.org/10.1016/j.cell.2009.10.015
↑ Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20240-5. doi:, 10.1073/pnas.0911500106. Epub 2009 Nov 12. PMID:19910535 doi:http://dx.doi.org/10.1073/pnas.0911500106
↑ Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O'Donnell ME, Li H. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol. 2016 Feb 8. doi: 10.1038/nsmb.3170. PMID:26854665 doi:http://dx.doi.org/10.1038/nsmb.3170