<table><tr><td colspan='2'>[[5mg3]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MG3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5MG3 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[5mg3]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MG3 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5MG3 FirstGlance]. <br>
[YIDC_ECOLI] Inner membrane protein required for the insertion and/or proper folding and/or complex formation of integral inner membrane proteins. Involved in integration of membrane proteins that insert dependently and independently of the Sec translocase complex, as well as at least 2 lipoproteins. Its own insertion requires SRP and is Sec translocase-dependent. Essential for the integration of Sec-dependent subunit a of the F(0)ATP synthase, FtsQ and SecE proteins and for Sec-independent subunit c of the F(0)ATP synthase, M13 phage procoat and the N-terminus of leader peptidase Lep. Probably interacts directly with Sec-independent substrates. Sec-dependent protein FtsQ interacts first with SecY then subsequently with YidC. Sec-dependent LacY and MalF require YidC to acquire tertiary structure and stability, a chaperone-like function, but not for membrane insertion. Stable maltose transport copmplex formation (MalFGK(2)) also requires YidC. Partially complements a Streptococcus mutans yidC2 disruption mutant.[1][2][3][4][5][6][7][8] [SECD_ECOLI] Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. The large periplasmic domain is thought to have a base and head domain joined by a hinge; movement of the hinge may be coupled to both proton transport and protein export, with the head domain capturing substrate, and a conformational change preventing backward movement and driving forward movement. Expression of V.alginolyticus SecD and SecF in E.coli confers Na(+)-dependent protein export, strongly suggesting SecDF functions via cation-coupled protein translocation.[9] [SECY_ECOLI] The central subunit of the protein translocation channel SecYEG. Consists of two halves formed by TMs 1-5 and 6-10. These two domains form a lateral gate at the front which open onto the bilayer between TMs 2 and 7, and are clamped together by SecE at the back. The channel is closed by both a pore ring composed of hydrophobic SecY resides and a short helix (helix 2A) on the extracellular side of the membrane which forms a plug. The plug probably moves laterally to allow the channel to open. The ring and the pore may move independently. SecY is required to insert newly synthesized SecY into the inner membrane. Overexpression of some hybrid proteins has been thought to jam the protein secretion apparatus resulting in cell death; while this may be true, overexpression also results in FtsH-mediated degradation of SecY.[HAMAP-Rule:MF_01465] [SECG_ECOLI] Subunit of the protein translocation channel SecYEG. Overexpression of some hybrid proteins has been thought to jam the protein secretion apparatus resulting in cell death; while this may be true it also results in FtsH-mediated degradation of SecY. Treatment with antibiotics that block translation elongation such as chloramphenicol also leads to degradation of SecY and SecE but not SecG. [SECE_ECOLI] Essential subunit of the protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation. Overexpression of some hybrid proteins has been thought to jam the protein secretion apparatus resulting in cell death; while this may be true it also results in FtsH-mediated degradation of SecY.[10] [SECF_ECOLI] Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. SecDF uses the proton motive force (PMF) to complete protein translocation after the ATP-dependent function of SecA. The large periplasmic domain is thought to have a base and head domain joined by a hinge; movement of the hinge may be coupled to both proton transport and protein export, with the head domain capturing substrate, and a conformational change preventing backward movement and driving forward movement. Expression of V.alginolyticus SecD and SecF in E.coli confers Na(+)-dependent protein export, strongly suggesting SecDF functions via cation-coupled protein translocation.[11]
Publication Abstract from PubMed
The conserved SecYEG protein-conducting channel and the accessory proteins SecDF-YajC and YidC constitute the bacterial holo-translocon (HTL), capable of protein-secretion and membrane-protein insertion. By employing an integrative approach combining small-angle neutron scattering (SANS), low-resolution electron microscopy and biophysical analyses we determined the arrangement of the proteins and lipids within the super-complex. The results guided the placement of X-ray structures of individual HTL components and allowed the proposal of a model of the functional translocon. Their arrangement around a central lipid-containing pool conveys an unexpected, but compelling mechanism for membrane-protein insertion. The periplasmic domains of YidC and SecD are poised at the protein-channel exit-site of SecY, presumably to aid the emergence of translocating polypeptides. The SecY lateral gate for membrane-insertion is adjacent to the membrane 'insertase' YidC. Absolute-scale SANS employing a novel contrast-match-point analysis revealed a dynamic complex adopting open and compact configurations around an adaptable central lipid-filled chamber, wherein polytopic membrane-proteins could fold, sheltered from aggregation and proteolysis.
A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion.,Botte M, Zaccai NR, Nijeholt JL, Martin R, Knoops K, Papai G, Zou J, Deniaud A, Karuppasamy M, Jiang Q, Roy AS, Schulten K, Schultz P, Rappsilber J, Zaccai G, Berger I, Collinson I, Schaffitzel C Sci Rep. 2016 Dec 7;6:38399. doi: 10.1038/srep38399. PMID:27924919[12]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, Driessen AJ, Oudega B, Luirink J. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 2000 Feb 15;19(4):542-9. PMID:10675323 doi:http://dx.doi.org/10.1093/emboj/19.4.542
↑ Samuelson JC, Chen M, Jiang F, Moller I, Wiedmann M, Kuhn A, Phillips GJ, Dalbey RE. YidC mediates membrane protein insertion in bacteria. Nature. 2000 Aug 10;406(6796):637-41. PMID:10949305 doi:http://dx.doi.org/10.1038/35020586
↑ van der Laan M, Urbanus ML, Ten Hagen-Jongman CM, Nouwen N, Oudega B, Harms N, Driessen AJ, Luirink J. A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5801-6. Epub 2003 Apr 30. PMID:12724529 doi:http://dx.doi.org/10.1073/pnas.0636761100
↑ Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE. YidC is strictly required for membrane insertion of subunits a and c of the F(1)F(0)ATP synthase and SecE of the SecYEG translocase. Biochemistry. 2003 Sep 9;42(35):10537-44. PMID:12950181 doi:http://dx.doi.org/10.1021/bi034309h
↑ Froderberg L, Houben EN, Baars L, Luirink J, de Gier JW. Targeting and translocation of two lipoproteins in Escherichia coli via the SRP/Sec/YidC pathway. J Biol Chem. 2004 Jul 23;279(30):31026-32. Epub 2004 May 12. PMID:15140892 doi:10.1074/jbc.M403229200
↑ Nagamori S, Smirnova IN, Kaback HR. Role of YidC in folding of polytopic membrane proteins. J Cell Biol. 2004 Apr;165(1):53-62. Epub 2004 Apr 5. PMID:15067017 doi:http://dx.doi.org/10.1083/jcb.200402067
↑ Xie K, Kiefer D, Nagler G, Dalbey RE, Kuhn A. Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochemistry. 2006 Nov 7;45(44):13401-8. PMID:17073462 doi:http://dx.doi.org/10.1021/bi060826z
↑ Wagner S, Pop OI, Haan GJ, Baars L, Koningstein G, Klepsch MM, Genevaux P, Luirink J, de Gier JW. Biogenesis of MalF and the MalFGK(2) maltose transport complex in Escherichia coli requires YidC. J Biol Chem. 2008 Jun 27;283(26):17881-90. doi: 10.1074/jbc.M801481200. Epub 2008, May 2. PMID:18456666 doi:http://dx.doi.org/10.1074/jbc.M801481200
↑ Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, Nureki O. Structure and function of a membrane component SecDF that enhances protein export. Nature. 2011 May 11;474(7350):235-8. doi: 10.1038/nature09980. PMID:21562494 doi:10.1038/nature09980
↑ Froderberg L, Houben EN, Baars L, Luirink J, de Gier JW. Targeting and translocation of two lipoproteins in Escherichia coli via the SRP/Sec/YidC pathway. J Biol Chem. 2004 Jul 23;279(30):31026-32. Epub 2004 May 12. PMID:15140892 doi:10.1074/jbc.M403229200
↑ Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, Nureki O. Structure and function of a membrane component SecDF that enhances protein export. Nature. 2011 May 11;474(7350):235-8. doi: 10.1038/nature09980. PMID:21562494 doi:10.1038/nature09980
↑ Botte M, Zaccai NR, Nijeholt JL, Martin R, Knoops K, Papai G, Zou J, Deniaud A, Karuppasamy M, Jiang Q, Roy AS, Schulten K, Schultz P, Rappsilber J, Zaccai G, Berger I, Collinson I, Schaffitzel C. A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion. Sci Rep. 2016 Dec 7;6:38399. doi: 10.1038/srep38399. PMID:27924919 doi:http://dx.doi.org/10.1038/srep38399