Sandbox Reserved 1626
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
== Structure == | == Structure == | ||
- | + | The precise identity of the MCU as the major calcium transporter remained elusive until 2011. Thanks to a series of combined efforts involving NMR spectroscopy, cry-EM, and x-ray crystallography they were able to see the structure of the membrane-bound transporter and its regulatory machinery. <ref name="Woods"/> The actual MCU complex is a tetrameric dimer of dimers assembly. As show in the 3D image to the right. What the 3D image does not sure is MICU1 and MICU 2, which are tight regulators off the MCU-mediated calcium uptake that actual bring in the calcium and move it towards the selectivity filter in the main MCU complex. There are three other proteins in the complete complex. EMRE, MCUb, and MCUR1. The EMRE is what associates MICU1 and MICU2 with main MCU protein. | |
- | + | ||
=== Selectivity Filter === | === Selectivity Filter === | ||
- | + | The pore-forming subunit of the MCU contains 351 amino acid residues with both the N- and C-terminal domains located in the matrix of the mitochondria. The two transmembrane domains, TM1 and TM2, are connected by a solvent- exposed loop with a highly conserved DXXE motif, which is essential for the calcium transport, located in the upper helix of TM2 === Common Mutations === | |
- | === Common Mutations === | + | |
== Medical Relevance == | == Medical Relevance == |
Revision as of 00:28, 24 March 2020
This Sandbox is Reserved from Jan 13 through September 1, 2020 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1598 through Sandbox Reserved 1627. |
To get started:
More help: Help:Editing |
MCU Complex
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ 3.0 3.1 3.2 Woods JJ, Wilson JJ. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol. 2019 Dec 20;55:9-18. doi: 10.1016/j.cbpa.2019.11.006. PMID:31869674 doi:http://dx.doi.org/10.1016/j.cbpa.2019.11.006
- ↑ 4.0 4.1 Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018 Nov;19(11):713-730. doi: 10.1038/s41580-018-0052-8. PMID:30143745 doi:http://dx.doi.org/10.1038/s41580-018-0052-8
- ↑ Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, Feng L. X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0330-9. doi:, 10.1038/s41586-018-0330-9. PMID:29995856 doi:http://dx.doi.org/10.1038/s41586-018-0330-9
- ↑ Kamer KJ, Jiang W, Kaushik VK, Mootha VK, Grabarek Z. Crystal structure of MICU2 and comparison with MICU1 reveal insights into the uniporter gating mechanism. Proc Natl Acad Sci U S A. 2019 Feb 12. pii: 1817759116. doi:, 10.1073/pnas.1817759116. PMID:30755530 doi:http://dx.doi.org/10.1073/pnas.1817759116
- ↑ Baradaran R, Wang C, Siliciano AF, Long SB. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0331-8. doi:, 10.1038/s41586-018-0331-8. PMID:29995857 doi:http://dx.doi.org/10.1038/s41586-018-0331-8