|
|
Line 3: |
Line 3: |
| <StructureSection load='6rlz' size='340' side='right'caption='[[6rlz]], [[Resolution|resolution]] 3.70Å' scene=''> | | <StructureSection load='6rlz' size='340' side='right'caption='[[6rlz]], [[Resolution|resolution]] 3.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6rlz]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6RLZ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6RLZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6rlz]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6RLZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6RLZ FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=6ZS:'>6ZS</scene>, <scene name='pdbligand=R6E:'>R6E</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.7Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5j31|5j31]], [[4n7y|4n7y]], [[4n84|4n84]], [[4n7g|4n7g]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=6ZS:(2~{S})-2-azanyl-2-methyl-butanoic+acid'>6ZS</scene>, <scene name='pdbligand=R6E:(2~{R})-2-azanyl-2-ethyl-octanoic+acid'>R6E</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">YWHAZ ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6rlz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6rlz OCA], [https://pdbe.org/6rlz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6rlz RCSB], [https://www.ebi.ac.uk/pdbsum/6rlz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6rlz ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6rlz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6rlz OCA], [http://pdbe.org/6rlz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6rlz RCSB], [http://www.ebi.ac.uk/pdbsum/6rlz PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6rlz ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/1433Z_HUMAN 1433Z_HUMAN]] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.<ref>PMID:9360956</ref> <ref>PMID:14578935</ref> <ref>PMID:15071501</ref> <ref>PMID:15644438</ref> <ref>PMID:16376338</ref> | + | [https://www.uniprot.org/uniprot/1433Z_HUMAN 1433Z_HUMAN] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.<ref>PMID:9360956</ref> <ref>PMID:14578935</ref> <ref>PMID:15071501</ref> <ref>PMID:15644438</ref> <ref>PMID:16376338</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6rlz" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6rlz" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[14-3-3 protein 3D structures|14-3-3 protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Grossmann, T N]] | + | [[Category: Pseudomonas aeruginosa]] |
- | [[Category: Hennig, S]] | + | [[Category: Grossmann TN]] |
- | [[Category: Wallraven, K]] | + | [[Category: Hennig S]] |
- | [[Category: Protein binding]] | + | [[Category: Wallraven K]] |
- | [[Category: Protein-protein-interaction macrocycle peptide]]
| + | |
| Structural highlights
Function
1433Z_HUMAN Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Large and flexible ligands gain increasing interest in the development of bioactive agents. They challenge the applicability of computational ligand optimization strategies originally developed for small molecules. Free energy perturbation (FEP) is often used for predicting binding affinities of small molecule ligands, however, its use for more complex ligands remains limited. Herein, we report the structure-based design of peptide macrocycles targeting the protein binding site of human adaptor protein 14-3-3. We observe a surprisingly strong dependency of binding affinities on relatively small variations in substituent size. FEP was performed to rationalize observed trends. To account for insufficient convergence of FEP, restrained calculations were performed and complemented with extensive REST MD simulations of the free ligands. These calculations revealed that changes in affinity originate both from altered direct interactions and conformational changes of the free ligand. In addition, MD simulations provided the basis to rationalize unexpected trends in ligand lipophilicity. We also verified the anticipated interaction site and binding mode for one of the high affinity ligands by X-ray crystallography. The introduced fully-atomistic simulation protocol can be used to rationalize the development of structurally complex ligands which will support future ligand maturation efforts.
Adapting free energy perturbation simulations for large macrocyclic ligands: how to dissect contributions from direct binding and free ligand flexibility.,Wallraven K, Holmelin FL, Glas A, Hennig S, Frolov AI, Grossmann TN Chem Sci. 2020 Jan 22;11(8):2269-2276. doi: 10.1039/c9sc04705k. eCollection 2020 , Feb 28. PMID:32180932[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Dubois T, Rommel C, Howell S, Steinhussen U, Soneji Y, Morrice N, Moelling K, Aitken A. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction. J Biol Chem. 1997 Nov 14;272(46):28882-8. PMID:9360956
- ↑ Zheng W, Zhang Z, Ganguly S, Weller JL, Klein DC, Cole PA. Cellular stabilization of the melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation. Nat Struct Biol. 2003 Dec;10(12):1054-7. Epub 2003 Oct 26. PMID:14578935 doi:10.1038/nsb1005
- ↑ Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 2004 Apr 21;23(8):1889-99. Epub 2004 Apr 8. PMID:15071501 doi:10.1038/sj.emboj.7600194
- ↑ Ganguly S, Weller JL, Ho A, Chemineau P, Malpaux B, Klein DC. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1222-7. Epub 2005 Jan 11. PMID:15644438 doi:0406871102
- ↑ Gu YM, Jin YH, Choi JK, Baek KH, Yeo CY, Lee KY. Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon. FEBS Lett. 2006 Jan 9;580(1):305-10. Epub 2005 Dec 19. PMID:16376338 doi:S0014-5793(05)01485-7
- ↑ Wallraven K, Holmelin FL, Glas A, Hennig S, Frolov AI, Grossmann TN. Adapting free energy perturbation simulations for large macrocyclic ligands: how to dissect contributions from direct binding and free ligand flexibility. Chem Sci. 2020 Jan 22;11(8):2269-2276. doi: 10.1039/c9sc04705k. eCollection 2020 , Feb 28. PMID:32180932 doi:http://dx.doi.org/10.1039/c9sc04705k
|