Sandbox Reserved 1626
From Proteopedia
(Difference between revisions)
Line 47: | Line 47: | ||
== Regulation/Inhibition == | == Regulation/Inhibition == | ||
- | Uptake of calcium into the mitochondria is pivotal for signalling and bioenergetic processes, but overload of calcium causes release of cytochrome c, overproduction of reactive oxygen species (ROS), swelling of the mitochondria, and opening of the mitochondrial permeability transition pore (mPTP) which all contribute to cell death. Therefore, the MCU has become a target of interest for therapies for certain conditions (like the ones above).<ref name="Woods" /> Part of this process is research that looks into inhibitors for the MCU. | + | Uptake of calcium into the mitochondria is pivotal for signalling and bioenergetic processes, but overload of calcium causes release of [http://proteopedia.org/wiki/index.php/Cytochrome_c cytochrome c], overproduction of [https://en.wikipedia.org/wiki/Reactive_oxygen_species reactive oxygen species (ROS)], swelling of the mitochondria, and opening of the [https://en.wikipedia.org/wiki/Mitochondrial_permeability_transition_pore mitochondrial permeability transition pore (mPTP)] which all contribute to cell death. Therefore, the MCU has become a target of interest for therapies for certain conditions (like the ones above).<ref name="Woods" /> Part of this process is research that looks into inhibitors for the MCU. |
- | Finding an good inhibitor of MCU is no small task. First of all, in the inhibitors that have already been discovered, there is no apparent structure-activity relationship that could predict their inhibitory activity. Additionally, many inhibitors of the MCU are not selective enough for the MCU or have other off-target effects that negatively affect the cell. Among the discovered inhibitors of the MCU are Mitoxantrone and DS16570511 with DS16570511 being the most potent. Furthermore, NecroX-5, KB-R7943, minocycline, and doxycycline have been shown to have inhibitory activity. However, all of these inhibitors are subject to the issues listed before.<ref name="Woods" /> | + | Finding an good inhibitor of MCU is no small task. First of all, in the inhibitors that have already been discovered, there is no apparent structure-activity relationship that could predict their inhibitory activity. Additionally, many inhibitors of the MCU are not selective enough for the MCU or have other off-target effects that negatively affect the cell. Among the discovered inhibitors of the MCU are [https://en.wikipedia.org/wiki/Mitoxantrone Mitoxantrone] and DS16570511 with DS16570511 being the most potent. Furthermore, NecroX-5, KB-R7943, [https://en.wikipedia.org/wiki/Minocycline minocycline], and [https://en.wikipedia.org/wiki/Doxycycline doxycycline] have been shown to have inhibitory activity. However, all of these inhibitors are subject to the issues listed before.<ref name="Woods" /> |
+ | |||
+ | ANTIBIOTIC STRUCTURES? | ||
Inorganic salts and coordination complexes have also been shown to inhibit calcium uptake. Specifically, the trivalent lanthanide ions can competitively inhibit the uniporter because of their similar ionic radii and coordination preferences to calcium. In addition, several transition metal coordination complexes (most notably Co, Cr, and Rh) with amine ligands have been shown to inhibit calcium uptake. Again, there is no apparent structure-activity relationship that predicts this behavior.<ref name="Woods" /> | Inorganic salts and coordination complexes have also been shown to inhibit calcium uptake. Specifically, the trivalent lanthanide ions can competitively inhibit the uniporter because of their similar ionic radii and coordination preferences to calcium. In addition, several transition metal coordination complexes (most notably Co, Cr, and Rh) with amine ligands have been shown to inhibit calcium uptake. Again, there is no apparent structure-activity relationship that predicts this behavior.<ref name="Woods" /> |
Revision as of 19:55, 28 March 2020
This Sandbox is Reserved from Jan 13 through September 1, 2020 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1598 through Sandbox Reserved 1627. |
To get started:
More help: Help:Editing |
Mitochondrial Calcium Uniporter (MCU) Complex
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 Woods JJ, Wilson JJ. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol. 2019 Dec 20;55:9-18. doi: 10.1016/j.cbpa.2019.11.006. PMID:31869674 doi:http://dx.doi.org/10.1016/j.cbpa.2019.11.006
- ↑ 4.0 4.1 4.2 4.3 4.4 Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018 Nov;19(11):713-730. doi: 10.1038/s41580-018-0052-8. PMID:30143745 doi:http://dx.doi.org/10.1038/s41580-018-0052-8
- ↑ 5.0 5.1 Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, Feng L. X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0330-9. doi:, 10.1038/s41586-018-0330-9. PMID:29995856 doi:http://dx.doi.org/10.1038/s41586-018-0330-9
- ↑ Kamer KJ, Jiang W, Kaushik VK, Mootha VK, Grabarek Z. Crystal structure of MICU2 and comparison with MICU1 reveal insights into the uniporter gating mechanism. Proc Natl Acad Sci U S A. 2019 Feb 12. pii: 1817759116. doi:, 10.1073/pnas.1817759116. PMID:30755530 doi:http://dx.doi.org/10.1073/pnas.1817759116
- ↑ Baradaran R, Wang C, Siliciano AF, Long SB. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0331-8. doi:, 10.1038/s41586-018-0331-8. PMID:29995857 doi:http://dx.doi.org/10.1038/s41586-018-0331-8