|
|
Line 3: |
Line 3: |
| <StructureSection load='5cwb' size='340' side='right'caption='[[5cwb]], [[Resolution|resolution]] 1.55Å' scene=''> | | <StructureSection load='5cwb' size='340' side='right'caption='[[5cwb]], [[Resolution|resolution]] 1.55Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5cwb]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Synthetic_construct_sequences Synthetic construct sequences]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CWB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5CWB FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5cwb]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CWB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5CWB FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5cwc|5cwc]], [[5cwd|5cwd]], [[5cwf|5cwf]], [[5cwg|5cwg]], [[5cwh|5cwh]], [[5cwi|5cwi]], [[5cwj|5cwj]], [[5cwk|5cwk]], [[5cwl|5cwl]], [[5cwm|5cwm]], [[5cwn|5cwn]], [[5cwo|5cwo]], [[5cwp|5cwp]], [[5cwq|5cwq]]</td></tr> | + | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5cwb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5cwb OCA], [https://pdbe.org/5cwb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5cwb RCSB], [https://www.ebi.ac.uk/pdbsum/5cwb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5cwb ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5cwb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5cwb OCA], [http://pdbe.org/5cwb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5cwb RCSB], [http://www.ebi.ac.uk/pdbsum/5cwb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5cwb ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 21: |
Line 20: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Synthetic construct sequences]] | + | [[Category: Synthetic construct]] |
- | [[Category: Bhabha, G]] | + | [[Category: Bhabha G]] |
- | [[Category: Ekiert, D C]] | + | [[Category: Ekiert DC]] |
- | [[Category: De novo protein]]
| + | |
- | [[Category: Helical repeat protein]]
| + | |
| Structural highlights
Publication Abstract from PubMed
A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 degrees C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 A. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.
Exploring the repeat protein universe through computational protein design.,Brunette TJ, Parmeggiani F, Huang PS, Bhabha G, Ekiert DC, Tsutakawa SE, Hura GL, Tainer JA, Baker D Nature. 2015 Dec 24;528(7583):580-4. doi: 10.1038/nature16162. Epub 2015 Dec 16. PMID:26675729[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Brunette TJ, Parmeggiani F, Huang PS, Bhabha G, Ekiert DC, Tsutakawa SE, Hura GL, Tainer JA, Baker D. Exploring the repeat protein universe through computational protein design. Nature. 2015 Dec 24;528(7583):580-4. doi: 10.1038/nature16162. Epub 2015 Dec 16. PMID:26675729 doi:http://dx.doi.org/10.1038/nature16162
|