|
|
| Line 3: |
Line 3: |
| | <StructureSection load='5cxu' size='340' side='right'caption='[[5cxu]], [[Resolution|resolution]] 1.60Å' scene=''> | | <StructureSection load='5cxu' size='340' side='right'caption='[[5cxu]], [[Resolution|resolution]] 1.60Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5cxu]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Anaeromyces_mucronatus Anaeromyces mucronatus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CXU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5CXU FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5cxu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Anaeromyces_mucronatus Anaeromyces mucronatus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CXU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5CXU FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5cxx|5cxx]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5cxu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5cxu OCA], [https://pdbe.org/5cxu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5cxu RCSB], [https://www.ebi.ac.uk/pdbsum/5cxu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5cxu ProSAT]</span></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">fae1A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=994854 Anaeromyces mucronatus])</td></tr>
| + | |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Feruloyl_esterase Feruloyl esterase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.1.73 3.1.1.73] </span></td></tr>
| + | |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5cxu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5cxu OCA], [http://pdbe.org/5cxu PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5cxu RCSB], [http://www.ebi.ac.uk/pdbsum/5cxu PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5cxu ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/F2YCB6_9FUNG F2YCB6_9FUNG] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 24: |
Line 23: |
| | </StructureSection> | | </StructureSection> |
| | [[Category: Anaeromyces mucronatus]] | | [[Category: Anaeromyces mucronatus]] |
| - | [[Category: Feruloyl esterase]] | |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Abbott, D W]] | + | [[Category: Abbott DW]] |
| - | [[Category: Gruninger, R J]] | + | [[Category: Gruninger RJ]] |
| - | [[Category: Alpha/beta hydrolase]]
| + | |
| - | [[Category: Esterase]]
| + | |
| - | [[Category: Ferulic acid]]
| + | |
| - | [[Category: Hydrolase]]
| + | |
| - | [[Category: Induced fit]]
| + | |
| Structural highlights
Function
F2YCB6_9FUNG
Publication Abstract from PubMed
Lignocellulosic biomass is a promising renewable resource; however, deconstruction of this material is still the rate-limiting step. Major obstacles in the biocatalytic turnover of lignocellulose are ester-linked decorations that prevent access to primary structural polysaccharides. Enzymes targeting these esters represent promising biotools for increasing bioconversion efficiency. Ruminant livestock are unique in their ability to degrade lignocellulose through the action of their gut microbiome. The anaerobic fungi (phylum Neocallimastigomycota) are key members of this ecosystem that express a large repertoire of carbohydrate-active enzymes (CAZymes) with little sequence identity with characterized CAZymes [Lombard, Golaconda, Drula, Coutinho and Henrissat (2014) Nucleic Acids Res. 42: , D490-D495]. We have identified a carbohydrate esterase family 1 (CE1) ferulic acid esterase (FAE) belonging toAnaeromyces mucronatus(AmCE1/Fae1a), and determined its X-ray structure in both the presence [1.55 A (1 A=0.1 nm)] and absence (1.60 A) of ferulic acid. AmCE1 adopts an alpha/beta-hydrolase fold that is structurally conserved with bacterial FAEs, and possesses a unique loop, termed the beta-clamp, that encloses the ligand. Isothermal titration calorimetry reveals that substrate binding is driven by enthalpic contributions, which overcomes a large entropic penalty. A comparative analysis of AmCE1 with related enzymes has uncovered the apparent structural basis for differential FAE activities targeting cross-linking ferulic acid conjugates compared with terminal decorations. Based on comparisons to structurally characterized FAEs, we propose that the beta-clamp may define the structural basis of exolytic activities in FAEs. This provides a structure-based tool for predicting exolysis and endolysis in CE1. These insights hold promise for rationally identifying enzymes tailored for bioconversion of biomass with variations in cell wall composition.
Contributions of a unique beta-clamp to substrate recognition illuminates the molecular basis of exolysis in ferulic acid esterases.,Gruninger RJ, Cote C, McAllister TA, Abbott DW Biochem J. 2016 Apr 1;473(7):839-49. doi: 10.1042/BJ20151153. PMID:27026397[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Gruninger RJ, Cote C, McAllister TA, Abbott DW. Contributions of a unique beta-clamp to substrate recognition illuminates the molecular basis of exolysis in ferulic acid esterases. Biochem J. 2016 Apr 1;473(7):839-49. doi: 10.1042/BJ20151153. PMID:27026397 doi:http://dx.doi.org/10.1042/BJ20151153
|