Sandbox Reserved 1627

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
==Introduction==
==Introduction==
-
The insulin receptor is a [http://en.wikipedia.org/wiki/Transmembrane_protein transmembrane] receptor that resides in the [http://en.wikipedia.org/wiki/Cell_membrane plasma membrane] and is activated by the binding of insulin and is a vital proponent of cellular function. The insulin receptor belongs to the large class of [http://en.wikipedia.org/wiki/Receptor_tyrosine_kinase receptor tyrosine kinase] (RTKs). RTKs have a high affinity at the cell surface to bind to a particular ligand and are made up of three distinct parts: an extracellular domain with binding sites, a transmembrane region, and an intracellular domain with the tyrosine kinases that lead to downstream signaling upon activation of each other. The unique ability of the insulin receptor in particular is that its conformation change allows it to play a key role in a variety of cellular pathways including glucose homeostasis, regulation of lipid, protein, and carbohydrate metabolism, gene expression, and even modulation of brain neurotransmitter levels. '''This page focuses specifically on the insulin receptor's role in glucose homeostasis'''.
+
The insulin receptor is a [http://en.wikipedia.org/wiki/Transmembrane_protein transmembrane] receptor that resides in the [http://en.wikipedia.org/wiki/Cell_membrane plasma membrane] and is activated by the binding of insulin and is a vital proponent of cellular function. The insulin receptor belongs to the large class of [http://en.wikipedia.org/wiki/Receptor_tyrosine_kinase receptor tyrosine kinase] (RTKs)<ref name="De Meyts"> PMID: 27512793 </ref>. RTKs have a high affinity at the cell surface to bind to a particular ligand and are made up of three distinct parts: an extracellular domain with binding sites, a transmembrane region, and an intracellular domain with the tyrosine kinases that lead to downstream signaling upon activation of each other. The unique ability of the insulin receptor in particular is that its conformation change allows it to play a key role in a variety of cellular pathways including glucose homeostasis, regulation of lipid, protein, and carbohydrate metabolism, gene expression, and even modulation of brain neurotransmitter levels. '''This page focuses specifically on the insulin receptor's role in glucose homeostasis'''.
==Structural Overview==
==Structural Overview==

Revision as of 20:53, 14 April 2020

Homo sapiens Insulin Receptor

An interactive view of the human insulin receptor. (PDB Codes 6SOF)

Drag the structure with the mouse to rotate

References

  1. De Meyts P. The Insulin Receptor and Its Signal Transduction Network PMID:27512793
  2. 2.0 2.1 Tatulian SA. Structural Dynamics of Insulin Receptor and Transmembrane Signaling. Biochemistry. 2015 Sep 15;54(36):5523-32. doi: 10.1021/acs.biochem.5b00805. Epub , 2015 Sep 3. PMID:26322622 doi:http://dx.doi.org/10.1021/acs.biochem.5b00805
  3. 3.0 3.1 3.2 Uchikawa E, Choi E, Shang G, Yu H, Bai XC. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. Elife. 2019 Aug 22;8. pii: 48630. doi: 10.7554/eLife.48630. PMID:31436533 doi:http://dx.doi.org/10.7554/eLife.48630
  4. Weis F, Menting JG, Margetts MB, Chan SJ, Xu Y, Tennagels N, Wohlfart P, Langer T, Muller CW, Dreyer MK, Lawrence MC. The signalling conformation of the insulin receptor ectodomain. Nat Commun. 2018 Oct 24;9(1):4420. doi: 10.1038/s41467-018-06826-6. PMID:30356040 doi:http://dx.doi.org/10.1038/s41467-018-06826-6
  5. Uchikawa E, Choi E, Shang G, Yu H, Bai XC. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. Elife. 2019 Aug 22;8. pii: 48630. doi: 10.7554/eLife.48630. PMID:31436533 doi:http://dx.doi.org/10.7554/eLife.48630
  6. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005 May;26(2):19-39. PMID:16278749
  7. Riddle MC. Treatment of diabetes with insulin. From art to science. West J Med. 1983 Jun;138(6):838-46. PMID:6351440

Student Contributors

  • Harrison Smith
  • Alyssa Ritter
Personal tools