|
|
Line 3: |
Line 3: |
| <SX load='5gas' size='340' side='right' viewer='molstar' caption='[[5gas]], [[Resolution|resolution]] 9.50Å' scene=''> | | <SX load='5gas' size='340' side='right' viewer='molstar' caption='[[5gas]], [[Resolution|resolution]] 9.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5gas]] is a 26 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5GAS OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5GAS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5gas]] is a 26 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5GAS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5GAS FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5gar|5gar]], [[5i1m|5i1m]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 9.5Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/H(+)-transporting_two-sector_ATPase H(+)-transporting two-sector ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.3.14 3.6.3.14] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5gas FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5gas OCA], [https://pdbe.org/5gas PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5gas RCSB], [https://www.ebi.ac.uk/pdbsum/5gas PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5gas ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5gas FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5gas OCA], [http://pdbe.org/5gas PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5gas RCSB], [http://www.ebi.ac.uk/pdbsum/5gas PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5gas ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/VATF_THET8 VATF_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATE_THET8 VATE_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATC_THET8 VATC_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. [[http://www.uniprot.org/uniprot/VATB_THET2 VATB_THET2]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type beta chain is a regulatory subunit. [[http://www.uniprot.org/uniprot/VATA_THET8 VATA_THET8]] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. [[http://www.uniprot.org/uniprot/VATD_THET2 VATD_THET2]] Produces ATP from ADP in the presence of a proton gradient across the membrane. | + | [https://www.uniprot.org/uniprot/VATA_THET8 VATA_THET8] Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 27: |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Thermus thermophilus]] | | [[Category: Thermus thermophilus]] |
- | [[Category: Rubinstein, J L]] | + | [[Category: Rubinstein JL]] |
- | [[Category: Schep, D G]] | + | [[Category: Schep DG]] |
- | [[Category: Zhao, J]] | + | [[Category: Zhao J]] |
- | [[Category: A-atpase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Membrane protein]]
| + | |
- | [[Category: Rotary atpase]]
| + | |
- | [[Category: V-atpase]]
| + | |
- | [[Category: V/a-atpase]]
| + | |
| Structural highlights
Function
VATA_THET8 Produces ATP from ADP in the presence of a proton gradient across the membrane. The V-type alpha chain is a catalytic subunit.
Publication Abstract from PubMed
Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacteriumThermus thermophilusis similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined theT. thermophilusV/A-ATPase structure by cryo-EM at 6.4 A resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of theT. thermophilusV/A-ATPase and eukaryotic V-ATPase fromSaccharomyces cerevisiaeallowed identification of the alpha-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in theS. cerevisaeV-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases.
Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance.,Schep DG, Zhao J, Rubinstein JL Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3245-50. doi:, 10.1073/pnas.1521990113. Epub 2016 Mar 7. PMID:26951669[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Schep DG, Zhao J, Rubinstein JL. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3245-50. doi:, 10.1073/pnas.1521990113. Epub 2016 Mar 7. PMID:26951669 doi:http://dx.doi.org/10.1073/pnas.1521990113
|