6ahd
From Proteopedia
(Difference between revisions)
Line 11: | Line 11: | ||
[[http://www.uniprot.org/uniprot/U5S1_HUMAN U5S1_HUMAN]] Mandibulofacial dysostosis-microcephaly syndrome. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/PRP8_HUMAN PRP8_HUMAN]] Defects in PRPF8 are the cause of retinitis pigmentosa type 13 (RP13) [MIM:[http://omim.org/entry/600059 600059]]. RP leads to degeneration of retinal photoreceptor cells. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. RP13 inheritance is autosomal dominant.<ref>PMID:17317632</ref> <ref>PMID:11468273</ref> [:]<ref>PMID:11910553</ref> <ref>PMID:12714658</ref> [[http://www.uniprot.org/uniprot/PRP31_HUMAN PRP31_HUMAN]] Defects in PRPF31 are the cause of retinitis pigmentosa type 11 (RP11) [MIM:[http://omim.org/entry/600138 600138]]. RP leads to degeneration of retinal photoreceptor cells. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. RP11 inheritance is autosomal dominant.<ref>PMID:17412961</ref> <ref>PMID:12444105</ref> <ref>PMID:11545739</ref> <ref>PMID:8808602</ref> <ref>PMID:12923864</ref> [[http://www.uniprot.org/uniprot/PRPF3_HUMAN PRPF3_HUMAN]] Defects in PRPF3 are the cause of retinitis pigmentosa type 18 (RP18) [MIM:[http://omim.org/entry/601414 601414]]. RP leads to degeneration of retinal photoreceptor cells. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. RP18 inheritance is autosomal dominant.<ref>PMID:11773002</ref> <ref>PMID:12714658</ref> <ref>PMID:17932117</ref> [[http://www.uniprot.org/uniprot/PRP6_HUMAN PRP6_HUMAN]] Retinitis pigmentosa. The disease may be caused by mutations affecting the gene represented in this entry. Cells from RP60 patients show intron retention for pre-mRNA bearing specific splicing signals. | [[http://www.uniprot.org/uniprot/U5S1_HUMAN U5S1_HUMAN]] Mandibulofacial dysostosis-microcephaly syndrome. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/PRP8_HUMAN PRP8_HUMAN]] Defects in PRPF8 are the cause of retinitis pigmentosa type 13 (RP13) [MIM:[http://omim.org/entry/600059 600059]]. RP leads to degeneration of retinal photoreceptor cells. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. RP13 inheritance is autosomal dominant.<ref>PMID:17317632</ref> <ref>PMID:11468273</ref> [:]<ref>PMID:11910553</ref> <ref>PMID:12714658</ref> [[http://www.uniprot.org/uniprot/PRP31_HUMAN PRP31_HUMAN]] Defects in PRPF31 are the cause of retinitis pigmentosa type 11 (RP11) [MIM:[http://omim.org/entry/600138 600138]]. RP leads to degeneration of retinal photoreceptor cells. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. RP11 inheritance is autosomal dominant.<ref>PMID:17412961</ref> <ref>PMID:12444105</ref> <ref>PMID:11545739</ref> <ref>PMID:8808602</ref> <ref>PMID:12923864</ref> [[http://www.uniprot.org/uniprot/PRPF3_HUMAN PRPF3_HUMAN]] Defects in PRPF3 are the cause of retinitis pigmentosa type 18 (RP18) [MIM:[http://omim.org/entry/601414 601414]]. RP leads to degeneration of retinal photoreceptor cells. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. RP18 inheritance is autosomal dominant.<ref>PMID:11773002</ref> <ref>PMID:12714658</ref> <ref>PMID:17932117</ref> [[http://www.uniprot.org/uniprot/PRP6_HUMAN PRP6_HUMAN]] Retinitis pigmentosa. The disease may be caused by mutations affecting the gene represented in this entry. Cells from RP60 patients show intron retention for pre-mRNA bearing specific splicing signals. | ||
== Function == | == Function == | ||
- | [[http://www.uniprot.org/uniprot/SF3A3_HUMAN SF3A3_HUMAN]] Subunit of the splicing factor SF3A required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. [[http://www.uniprot.org/uniprot/SF3A2_HUMAN SF3A2_HUMAN]] Subunit of the splicing factor SF3A required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. [[http://www.uniprot.org/uniprot/WBP4_HUMAN WBP4_HUMAN]] Promotes pre-mRNA splicing. A spliceosome-associated protein; may play a role in cross-intron bridging of U1 and U2 snRNPs in the mammalian A complex.<ref>PMID:9724750</ref> <ref>PMID:19592703</ref> [[http://www.uniprot.org/uniprot/U5S1_HUMAN U5S1_HUMAN]] Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex required for pre-mRNA splicing. Binds GTP. [[http://www.uniprot.org/uniprot/PRP8_HUMAN PRP8_HUMAN]] Central component of the spliceosome, which may play a role in aligning the pre-mRNA 5'- and 3'-exons for ligation. Interacts with U5 snRNA, and with pre-mRNA 5'-splice sites in B spliceosomes and 3'-splice sites in C spliceosomes. [[http://www.uniprot.org/uniprot/RUXG_HUMAN RUXG_HUMAN]] Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Associated with snRNP U1, U2, U4/U6 and U5. [[http://www.uniprot.org/uniprot/RU2B_HUMAN RU2B_HUMAN]] Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A' protein. [[http://www.uniprot.org/uniprot/PR38A_HUMAN PR38A_HUMAN]] May be required for pre-mRNA splicing. [[http://www.uniprot.org/uniprot/LSM8_HUMAN LSM8_HUMAN]] Binds specifically to the 3'-terminal U-tract of U6 snRNA and is probably a component of the spliceosome | + | [[http://www.uniprot.org/uniprot/SF3A3_HUMAN SF3A3_HUMAN]] Subunit of the splicing factor SF3A required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. [[http://www.uniprot.org/uniprot/SF3A2_HUMAN SF3A2_HUMAN]] Subunit of the splicing factor SF3A required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. [[http://www.uniprot.org/uniprot/WBP4_HUMAN WBP4_HUMAN]] Promotes pre-mRNA splicing. A spliceosome-associated protein; may play a role in cross-intron bridging of U1 and U2 snRNPs in the mammalian A complex.<ref>PMID:9724750</ref> <ref>PMID:19592703</ref> [[http://www.uniprot.org/uniprot/U5S1_HUMAN U5S1_HUMAN]] Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex required for pre-mRNA splicing. Binds GTP. [[http://www.uniprot.org/uniprot/PRP8_HUMAN PRP8_HUMAN]] Central component of the spliceosome, which may play a role in aligning the pre-mRNA 5'- and 3'-exons for ligation. Interacts with U5 snRNA, and with pre-mRNA 5'-splice sites in B spliceosomes and 3'-splice sites in C spliceosomes. [[http://www.uniprot.org/uniprot/RUXG_HUMAN RUXG_HUMAN]] Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Associated with snRNP U1, U2, U4/U6 and U5. [[http://www.uniprot.org/uniprot/RU2B_HUMAN RU2B_HUMAN]] Involved in pre-mRNA splicing. This protein is associated with snRNP U2. It binds stem loop IV of U2 snRNA only in presence of the U2A' protein. [[http://www.uniprot.org/uniprot/PR38A_HUMAN PR38A_HUMAN]] May be required for pre-mRNA splicing. [[http://www.uniprot.org/uniprot/LSM8_HUMAN LSM8_HUMAN]] Binds specifically to the 3'-terminal U-tract of U6 snRNA and is probably a component of the spliceosome. [[http://www.uniprot.org/uniprot/SNR40_HUMAN SNR40_HUMAN]] Component of the U5 small nuclear ribonucleoprotein (snRNP) complex. The U5 snRNP is part of the spliceosome, a multiprotein complex that catalyzes the removal of introns from pre-messenger RNAs.<ref>PMID:9774689</ref> [[http://www.uniprot.org/uniprot/SMD1_HUMAN SMD1_HUMAN]] May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP-snRNP interactions through nonspecific electrostatic contacts with RNA. [[http://www.uniprot.org/uniprot/MFAP1_HUMAN MFAP1_HUMAN]] Component of the elastin-associated microfibrils. [[http://www.uniprot.org/uniprot/PRP31_HUMAN PRP31_HUMAN]] Involved in pre-mRNA splicing. Required for U4/U6.U5 tri-snRNP formation.<ref>PMID:11867543</ref> [[http://www.uniprot.org/uniprot/SF3A1_HUMAN SF3A1_HUMAN]] Subunit of the splicing factor SF3A required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. [[http://www.uniprot.org/uniprot/LSM3_HUMAN LSM3_HUMAN]] Binds specifically to the 3'-terminal U-tract of U6 snRNA. [[http://www.uniprot.org/uniprot/SNUT1_HUMAN SNUT1_HUMAN]] Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA.<ref>PMID:11350945</ref> [[http://www.uniprot.org/uniprot/PPIH_HUMAN PPIH_HUMAN]] PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. Participates in pre-mRNA splicing. May play a role in the assembly of the U4/U5/U6 tri-snRNP complex. May act as a chaperone.<ref>PMID:9570313</ref> <ref>PMID:11823439</ref> <ref>PMID:12875835</ref> [[http://www.uniprot.org/uniprot/PRP4_HUMAN PRP4_HUMAN]] Involved in pre-mRNA splicing. [[http://www.uniprot.org/uniprot/RU2A_HUMAN RU2A_HUMAN]] This protein is associated with sn-RNP U2. It helps the A' protein to bind stem loop IV of U2 snRNA. [[http://www.uniprot.org/uniprot/TXN4A_HUMAN TXN4A_HUMAN]] Essential role in pre-mRNA splicing. [[http://www.uniprot.org/uniprot/SF3B3_HUMAN SF3B3_HUMAN]] Subunit of the splicing factor SF3B required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron. [[http://www.uniprot.org/uniprot/LSM7_HUMAN LSM7_HUMAN]] Binds specifically to the 3'-terminal U-tract of U6 snRNA and is probably a component of the spliceosome. [[http://www.uniprot.org/uniprot/LSM4_HUMAN LSM4_HUMAN]] Binds specifically to the 3'-terminal U-tract of U6 snRNA. [[http://www.uniprot.org/uniprot/SF3B6_HUMAN SF3B6_HUMAN]] Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex (PubMed:27720643). SF3B complex is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA (PubMed:12234937). Directly contacts the pre-mRNA branch site adenosine for the first catalytic step of splicing (PubMed:16432215). Enters the spliceosome and associates with the pre-mRNA branch site as part of the 17S U2 or, in the case of the minor spliceosome, as part of the 18S U11/U12 snRNP complex, and thus may facilitate the interaction of these snRNP with the branch sites of U2 and U12 respectively (PubMed:16432215).<ref>PMID:12234937</ref> <ref>PMID:16432215</ref> <ref>PMID:27720643</ref> [[http://www.uniprot.org/uniprot/NH2L1_HUMAN NH2L1_HUMAN]] Binds to the 5'-stem-loop of U4 snRNA and may play a role in the late stage of spliceosome assembly. The protein undergoes a conformational change upon RNA-binding.<ref>PMID:10545122</ref> <ref>PMID:17412961</ref> [[http://www.uniprot.org/uniprot/PRPF3_HUMAN PRPF3_HUMAN]] Participates in pre-mRNA splicing. May play a role in the assembly of the U4/U5/U6 tri-snRNP complex. [[http://www.uniprot.org/uniprot/SF3B1_HUMAN SF3B1_HUMAN]] Subunit of the splicing factor SF3B required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. May also be involved in the assembly of the 'E' complex. Belongs also to the minor U12-dependent spliceosome, which is involved in the splicing of rare class of nuclear pre-mRNA intron. [[http://www.uniprot.org/uniprot/SMD2_HUMAN SMD2_HUMAN]] Required for pre-mRNA splicing. Required for snRNP biogenesis (By similarity). [[http://www.uniprot.org/uniprot/PHF5A_HUMAN PHF5A_HUMAN]] Acts as a transcriptional regulator by binding to the GJA1/Cx43 promoter and enhancing its up-regulation by ESR1/ER-alpha. Also involved in pre-mRNA splicing.<ref>PMID:12234937</ref> [[http://www.uniprot.org/uniprot/LSM6_HUMAN LSM6_HUMAN]] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner, facilitating the efficient association of RNA processing factors with their substrates. Component of the cytoplasmic LSM1-LSM7 complex, which is thought to be involved in mRNA degradation by activating the decapping step in the 5'-to-3' mRNA decay pathway. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 di-snRNP, spliceosomal U4/U6.U5 tri-snRNP, and free U6 snRNP). It binds directly to the 3'-terminal U-tract of U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. LSM2-LSM8 probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping, and in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA (By similarity). [[http://www.uniprot.org/uniprot/PRP6_HUMAN PRP6_HUMAN]] Involved in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex, one of the building blocks of the spliceosome. Enhances dihydrotestosterone-induced transactivation activity of AR, as well as dexamethasone-induced transactivation activity of NR3C1, but does not affect estrogen-induced transactivation.<ref>PMID:12039962</ref> [[http://www.uniprot.org/uniprot/LSM2_HUMAN LSM2_HUMAN]] Binds specifically to the 3'-terminal U-tract of U6 snRNA. May be involved in pre-mRNA splicing. [[http://www.uniprot.org/uniprot/LSM5_HUMAN LSM5_HUMAN]] Plays a role in U6 snRNP assembly and function. Binds to the 3' end of U6 snRNA, thereby facilitating formation of the spliceosomal U4/U6 duplex formation in vitro. [[http://www.uniprot.org/uniprot/SMD3_HUMAN SMD3_HUMAN]] Appears to function in the U7 snRNP complex that is involved in histone 3'-end processing. Binds to the downstream cleavage product (DCP) of histone pre-mRNA in a U7 snRNP dependent manner.<ref>PMID:11574479</ref> |
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Revision as of 06:00, 14 October 2020
The Cryo-EM Structure of Human Pre-catalytic Spliceosome (B complex) at 3.8 angstrom resolution
|