|
|
Line 3: |
Line 3: |
| <SX load='6djp' size='340' side='right' viewer='molstar' caption='[[6djp]], [[Resolution|resolution]] 4.80Å' scene=''> | | <SX load='6djp' size='340' side='right' viewer='molstar' caption='[[6djp]], [[Resolution|resolution]] 4.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6djp]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human] and [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DJP OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6DJP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6djp]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DJP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DJP FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.8Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ITGAV, MSK8, VNRA, VTNR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), ITGB8 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6djp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6djp OCA], [http://pdbe.org/6djp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6djp RCSB], [http://www.ebi.ac.uk/pdbsum/6djp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6djp ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6djp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6djp OCA], [https://pdbe.org/6djp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6djp RCSB], [https://www.ebi.ac.uk/pdbsum/6djp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6djp ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/ITAV_HUMAN ITAV_HUMAN]] The alpha-V integrins are receptors for vitronectin, cytotactin, fibronectin, fibrinogen, laminin, matrix metalloproteinase-2, osteopontin, osteomodulin, prothrombin, thrombospondin and vWF. They recognize the sequence R-G-D in a wide array of ligands. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. [[http://www.uniprot.org/uniprot/ITB8_HUMAN ITB8_HUMAN]] Integrin alpha-V/beta-8 is a receptor for fibronectin. | + | [https://www.uniprot.org/uniprot/ITAV_HUMAN ITAV_HUMAN] The alpha-V integrins are receptors for vitronectin, cytotactin, fibronectin, fibrinogen, laminin, matrix metalloproteinase-2, osteopontin, osteomodulin, prothrombin, thrombospondin and vWF. They recognize the sequence R-G-D in a wide array of ligands. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 26: |
Line 26: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lk3 transgenic mice]] | + | [[Category: Mus musculus]] |
- | [[Category: Campbell, M G]] | + | [[Category: Campbell MG]] |
- | [[Category: Cheng, Y]] | + | [[Category: Cheng Y]] |
- | [[Category: Cormier, A]] | + | [[Category: Cormier A]] |
- | [[Category: Nishimura, S L]] | + | [[Category: Nishimura SL]] |
- | [[Category: Adhesion]]
| + | |
- | [[Category: Fab]]
| + | |
- | [[Category: Glycoprotein]]
| + | |
- | [[Category: Membrane protein]]
| + | |
| Structural highlights
Function
ITAV_HUMAN The alpha-V integrins are receptors for vitronectin, cytotactin, fibronectin, fibrinogen, laminin, matrix metalloproteinase-2, osteopontin, osteomodulin, prothrombin, thrombospondin and vWF. They recognize the sequence R-G-D in a wide array of ligands. In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions.
Publication Abstract from PubMed
Integrins are conformationally flexible cell surface receptors that survey the extracellular environment for their cognate ligands. Interactions with ligands are thought to be linked to global structural rearrangements involving transitions between bent, extended-closed and extended-open forms. Thus far, structural details are lacking for integrins in the extended conformations due to extensive flexibility between the headpiece and legs in this conformation. Here we present single-particle electron cryomicroscopy structures of human alphavbeta8 integrin in the extended-closed conformation, which has been considered to be a low-affinity intermediate. Our structures show the headpiece rotating about a flexible alphav knee, suggesting a ligand surveillance mechanism for integrins in their extended-closed form. Our model predicts that the extended conformation is mainly stabilized by an interface formed between flexible loops in the upper and lower domains of the alphav leg. Confirming these findings with the alphavbeta3 integrin suggests that our model of stabilizing the extended-closed conformation is generalizable to other integrins.
Cryo-EM structure of the alphavbeta8 integrin reveals a mechanism for stabilizing integrin extension.,Cormier A, Campbell MG, Ito S, Wu S, Lou J, Marks J, Baron JL, Nishimura SL, Cheng Y Nat Struct Mol Biol. 2018 Aug;25(8):698-704. doi: 10.1038/s41594-018-0093-x. Epub, 2018 Jul 30. PMID:30061598[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Cormier A, Campbell MG, Ito S, Wu S, Lou J, Marks J, Baron JL, Nishimura SL, Cheng Y. Cryo-EM structure of the alphavbeta8 integrin reveals a mechanism for stabilizing integrin extension. Nat Struct Mol Biol. 2018 Aug;25(8):698-704. doi: 10.1038/s41594-018-0093-x. Epub, 2018 Jul 30. PMID:30061598 doi:http://dx.doi.org/10.1038/s41594-018-0093-x
|