|
|
Line 3: |
Line 3: |
| <SX load='6p5k' size='340' side='right' viewer='molstar' caption='[[6p5k]], [[Resolution|resolution]] 3.10Å' scene=''> | | <SX load='6p5k' size='340' side='right' viewer='molstar' caption='[[6p5k]], [[Resolution|resolution]] 3.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6p5k]] is a 81 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P5K OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6P5K FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6p5k]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P5K OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6P5K FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6p5i|6p5i]], [[6p5j|6p5j]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.1Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6p5k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p5k OCA], [http://pdbe.org/6p5k PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6p5k RCSB], [http://www.ebi.ac.uk/pdbsum/6p5k PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6p5k ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6p5k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p5k OCA], [https://pdbe.org/6p5k PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6p5k RCSB], [https://www.ebi.ac.uk/pdbsum/6p5k PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6p5k ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/G1SS70_RABIT G1SS70_RABIT]] May play a role during erythropoiesis through regulation of transcription factor DDIT3.[HAMAP-Rule:MF_03122] [[http://www.uniprot.org/uniprot/U3KPD5_RABIT U3KPD5_RABIT]] Binds to the 23S rRNA.[RuleBase:RU000576] | + | [https://www.uniprot.org/uniprot/RL4_RABIT RL4_RABIT] Component of the large ribosomal subunit (PubMed:26245381, PubMed:27863242). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:26245381, PubMed:27863242).<ref>PMID:26245381</ref> <ref>PMID:27863242</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 21: |
| ==See Also== | | ==See Also== |
| *[[Ribosome 3D structures|Ribosome 3D structures]] | | *[[Ribosome 3D structures|Ribosome 3D structures]] |
| + | *[[3D sructureseceptor for activated protein kinase C 1|3D sructureseceptor for activated protein kinase C 1]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 27: |
Line 28: |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Oryctolagus cuniculus]] | | [[Category: Oryctolagus cuniculus]] |
- | [[Category: Acosta-Reyes, F J]] | + | [[Category: Acosta-Reyes FJ]] |
- | [[Category: Fernandez, I S]] | + | [[Category: Fernandez IS]] |
- | [[Category: Frank, J]] | + | [[Category: Frank J]] |
- | [[Category: Neupane, R]] | + | [[Category: Neupane R]] |
- | [[Category: Internal ribosome entry site]]
| + | |
- | [[Category: Ire]]
| + | |
- | [[Category: Israeli acute paralysis virus]]
| + | |
- | [[Category: Large ribosomal subunit]]
| + | |
- | [[Category: Ribosome]]
| + | |
- | [[Category: Small ribosomal subunit]]
| + | |
| Structural highlights
Function
RL4_RABIT Component of the large ribosomal subunit (PubMed:26245381, PubMed:27863242). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:26245381, PubMed:27863242).[1] [2]
Publication Abstract from PubMed
Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.
The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs.,Acosta-Reyes F, Neupane R, Frank J, Fernandez IS EMBO J. 2019 Oct 14:e102226. doi: 10.15252/embj.2019102226. PMID:31609474[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
- ↑ Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
- ↑ Acosta-Reyes F, Neupane R, Frank J, Fernandez IS. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO J. 2019 Oct 14:e102226. doi: 10.15252/embj.2019102226. PMID:31609474 doi:http://dx.doi.org/10.15252/embj.2019102226
|