Sandbox Reserved 1600

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
=Structure=
=Structure=
-
The <scene name='83/838655/Bdoxidase_structure_full_still/1'>overall structure</scene> contains <scene name='83/838655/Bdoxidase_only_helicies/1'>19 transmembrane helices</scene> that are arranged in a nearly oval shape (Fig 1.).<ref name = ”Safarian” /> The protein contains two structurally similar subunits, <scene name='83/838655/Bdoxidase_cyda_subunit/1'>CydA</scene>, seen in <font color='blue'><b>blue</b></font>, and <scene name='83/838655/Bdoxidase_cydb_subunit/1'>CydB</scene>, each containing nine helices, and one smaller subunit, <scene name='83/838655/Bdoxidase_cydx_subunit/1'>CydX</scene>, with one transmembrane helix. The subunits are interacting using hydrophobic residues and symmetry at the interfaces. The CydX subunit, whose function is not currently known, is positioned in the same way as CydS, which is found in E. coli bd oxidase. Due to its similar structure and position, it has been hypothesized to potentially stabilize <scene name='83/838655/Bdoxidase_heme_b558__labelled/3'>Heme B558</scene> during potential structural rearrangements of the Q loop upon binding and oxidation of quinol. <ref name = ”Safarian” /> The <scene name='83/838655/Bdoxidase_q_loop/1'>Q loop</scene> is a hydrophilic region above Cyd A. The lack of hydrogen bonding in this hydrophobic protein allows the protein to be flexible and go through a large conformational change for reduction of dioxygen.
+
The <scene name='83/838655/Bdoxidase_structure_full_still/1'>overall structure</scene> contains <scene name='83/838655/Bdoxidase_only_helicies/1'>19 transmembrane helices</scene> that are arranged in a nearly oval shape (Fig 1.).<ref name = ”Safarian” /> The protein contains two structurally similar subunits, <scene name='83/838655/Bdoxidase_cyda_subunit/1'>CydA</scene>, seen in <font color='blue'><b>blue</b></font>, and <scene name='83/838655/Bdoxidase_cydb_subunit/1'>CydB</scene>, seen in <font color='red'><b>red</b></font>each containing nine helices, and one smaller subunit, <scene name='83/838655/Bdoxidase_cydx_subunit/1'>CydX</scene>, with one transmembrane helix. The subunits are interacting using hydrophobic residues and symmetry at the interfaces. The CydX subunit, whose function is not currently known, is positioned in the same way as CydS, which is found in E. coli bd oxidase. Due to its similar structure and position, it has been hypothesized to potentially stabilize <scene name='83/838655/Bdoxidase_heme_b558__labelled/3'>Heme B558</scene> during potential structural rearrangements of the Q loop upon binding and oxidation of quinol. <ref name = ”Safarian” /> The <scene name='83/838655/Bdoxidase_q_loop/1'>Q loop</scene> is a hydrophilic region above Cyd A. The lack of hydrogen bonding in this hydrophobic protein allows the protein to be flexible and go through a large conformational change for reduction of dioxygen.
==Active Site==
==Active Site==

Revision as of 02:48, 13 April 2020

bd oxidase; Geobacillus thermodenitrificans

bd oxidase 5DOQ

Drag the structure with the mouse to rotate

References

  1. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
  3. Junemann S. Cytochrome bd terminal oxidase. Biochim Biophys Acta. 1997 Aug 22;1321(2):107-27. doi:, 10.1016/s0005-2728(97)00046-7. PMID:9332500 doi:http://dx.doi.org/10.1016/s0005-2728(97)00046-7
  4. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol. 2005 Mar;187(6):2020-9. doi: 10.1128/JB.187.6.2020-2029.2005. PMID:15743950 doi:http://dx.doi.org/10.1128/JB.187.6.2020-2029.2005
  5. Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4

Student Contributors

Emma H Harris Carson E MIddlebrook

Personal tools