Sandbox Reserved 1600

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 43: Line 43:
= Overall Oxygen Reduction Mechanism Summary=
= Overall Oxygen Reduction Mechanism Summary=
-
[[Image: CH462 overall mechanism 1.png|300 px|left|thumb|Figure 4. overall oxidation-reduction mechanism summary.]]
+
[[Image: CH462 overall mechanism 1.png|300 px|left|thumb|Figure 4. Overall oxidation-reduction mechanism summary.]]
As mentioned above, the purpose of the bd oxidase is to reduce O₂ to 2H₂O using quinol as the reducing substrate, and having the overall reaction of O₂ + 4H<sup>+</sup> + 4e<sup>-</sup> → 2H₂O. The oxygen comes from the extracellular side of the protein, and enters through the oxygen entry site to Heme D. This pathway is depicted in <font color='orange'><b>orange</b></font> in Figure 4.
As mentioned above, the purpose of the bd oxidase is to reduce O₂ to 2H₂O using quinol as the reducing substrate, and having the overall reaction of O₂ + 4H<sup>+</sup> + 4e<sup>-</sup> → 2H₂O. The oxygen comes from the extracellular side of the protein, and enters through the oxygen entry site to Heme D. This pathway is depicted in <font color='orange'><b>orange</b></font> in Figure 4.

Revision as of 16:24, 17 April 2020

bd oxidase; Geobacillus thermodenitrificans

bd oxidase 5DOQ

Drag the structure with the mouse to rotate

References

  1. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
  3. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol. 2005 Mar;187(6):2020-9. doi: 10.1128/JB.187.6.2020-2029.2005. PMID:15743950 doi:http://dx.doi.org/10.1128/JB.187.6.2020-2029.2005
  4. Junemann S. Cytochrome bd terminal oxidase. Biochim Biophys Acta. 1997 Aug 22;1321(2):107-27. doi:, 10.1016/s0005-2728(97)00046-7. PMID:9332500 doi:http://dx.doi.org/10.1016/s0005-2728(97)00046-7
  5. Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
  6. Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4

Student Contributors

Emma H Harris

Carson E Middlebrook

Personal tools