Sandbox Reserved 1600

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 55: Line 55:
= Structure Similarity to bd oxidase found in ''E. coli'' =
= Structure Similarity to bd oxidase found in ''E. coli'' =
-
[[Image:Aligmentbdoidase.jpg|200 px|left|thumb|Figure 5. Alignment of bd oxidase for the organisms ''G. thermodenitrificans'' ([[PBD: 5DOQ]]) shown in <font color='blue'><b>blue</b></font> and ''E. coli'' ([[PBD: 6RKO]]) shown in <font color='purple'><b>purple</b></font>.]] [[Image:Heme alignment.png|200 px|right|thumb|Figure 6. Heme arrangements for the organisms ''G. thermodenitrificans'' and ''E. coli''. Heme D (green); Heme B595 and Heme B558 shown in pink]] The structure of bd oxidase for ''Geobacillus thermodenitrificans'' is highly similar to the structure of bd oxidase for [[6rko|''E. coli'']] with the only noticeable difference being the length of the Q-loop. <ref name= ”Theßeling”>PMID:31723136</ref> The similarity and differences between the two proteins can be seen in the alignment of their main structures (Fig.5). Although only having one noticeable difference in structure, this difference causes the two proteins to have different active sites (Fig. 6). In particular, the <scene name='83/838655/Hemes_ecoli/2'> hemes of bd oxidase in E. coli </scene> are arranged differently than the <scene name='83/838655/Hemes/4'>hemes in ''Geobacillus thermodenitrificans''</scene>. The main reason for this change in heme arrangement is because of the <scene name='83/838655/Oxygen_site_ecoli/1'>oxygen binding site</scene> being located differently in ''E. coli'', thus causing a different active site arrangement in the protein. <ref name = ”Theßeling” />
+
[[Image:Aligmentbdoidase.jpg|200 px|left|thumb|Figure 5. Alignment of bd oxidase for the organisms ''G. thermodenitrificans'' ([[PBD: 5DOQ]]) shown in <font color='blue'><b>blue</b></font> and ''E. coli'' ([[PBD: 6RKO]]) shown in <font color='purple'><b>purple</b></font>.]] [[Image:Heme alignment.png|200 px|right|thumb|Figure 6. Heme arrangements for the organisms ''G. thermodenitrificans'' and ''E. coli''. Heme D (green); Heme B595 and Heme B558 shown in pink]] The structure of bd oxidase for ''Geobacillus thermodenitrificans'' is highly similar to the structure of bd oxidase for [[6rko|''E. coli'']] with the only noticeable difference being the length of the Q-loop. <ref name= ”Theßeling”>PMID:31723136</ref> The similarity and differences between the two proteins can be seen in the alignment of their main structures (Fig.5). Although only having one noticeable difference in structure, this difference causes the two proteins to have different active sites (Fig. 6). In particular, the <scene name='83/838655/Hemes_ecoli/2'> hemes of bd oxidase in E. coli </scene> are arranged differently than the <scene name='83/838655/Hemes/4'>hemes of bd oxidase in G. thermodenitrificans</scene>. The main reason for this change in heme arrangement is because of the <scene name='83/838655/Oxygen_site_ecoli/1'>oxygen binding site</scene> being located differently in ''E. coli'', thus causing a different active site arrangement in the protein. <ref name = ”Theßeling” />

Revision as of 17:47, 20 April 2020

bd oxidase; Geobacillus thermodenitrificans

bd oxidase 5DOQ

Drag the structure with the mouse to rotate

References

  1. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
  3. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol. 2005 Mar;187(6):2020-9. doi: 10.1128/JB.187.6.2020-2029.2005. PMID:15743950 doi:http://dx.doi.org/10.1128/JB.187.6.2020-2029.2005
  4. Junemann S. Cytochrome bd terminal oxidase. Biochim Biophys Acta. 1997 Aug 22;1321(2):107-27. doi:, 10.1016/s0005-2728(97)00046-7. PMID:9332500 doi:http://dx.doi.org/10.1016/s0005-2728(97)00046-7
  5. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011 Nov;1807(11):1398-413. doi:, 10.1016/j.bbabio.2011.06.016. Epub 2011 Jul 1. PMID:21756872 doi:http://dx.doi.org/10.1016/j.bbabio.2011.06.016
  6. Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
  7. Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4

Student Contributors

Emma H Harris

Carson E Middlebrook

Personal tools