Sandbox Reserved 1600

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 47: Line 47:
When all of these elements of the reduction aggregate in the active site, the protons and electrons are shuttled to <scene name='83/838655/Bd_oxidase_heme_d/1'>Heme D</scene>, where the actual reduction occurs. The 2H₂O molecules are then expelled, as seen in <font color='red'><b>red</b></font> in Figure 4. The shuttling of these electrons and protons also helps assist with the electric chemical potential in the [https://en.wikipedia.org/wiki/Cell_membrane cellular membrane].
When all of these elements of the reduction aggregate in the active site, the protons and electrons are shuttled to <scene name='83/838655/Bd_oxidase_heme_d/1'>Heme D</scene>, where the actual reduction occurs. The 2H₂O molecules are then expelled, as seen in <font color='red'><b>red</b></font> in Figure 4. The shuttling of these electrons and protons also helps assist with the electric chemical potential in the [https://en.wikipedia.org/wiki/Cell_membrane cellular membrane].
- 
-
= Biological Importance of bd oxidase =
 
- 
-
Oxygen toxicity is a fatal problem among all organisms, but can easily occur in prokaryotes due to their low oxygen tolerance. In prokaryotes, the [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171616/ cytochrome bd oxygen reductases] function to quickly reduce the concentration of O₂ into H₂O to protect the cell from detrimental effects. Without proper functioning of these enzymes, or if O₂ concentrations are too high, the concentrations of the intermediates formed from the reduction reaction will increase and can be detrimental. As a result of the vitality of reducing O₂ in prokaryotes, knowledge on bd oxidases can help develop drugs that target these enzymes to combat bacterial infection.<ref name=”Borisov”>PMID:21756872</ref>
 
= Structure Similarity to bd oxidase found in ''E. coli'' =
= Structure Similarity to bd oxidase found in ''E. coli'' =
Line 56: Line 52:
</StructureSection>
</StructureSection>
 +
 +
= Biological Importance of O₂ reduction =
 +
 +
Oxygen toxicity is a fatal problem among all organisms, but can easily occur in prokaryotes due to their low oxygen tolerance. In prokaryotes, the [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171616/ cytochrome bd oxygen reductases] function to quickly reduce the concentration of O₂ into H₂O to protect the cell from detrimental effects. Without proper functioning of these enzymes, or if O₂ concentrations are too high, the concentrations of the intermediates formed from the reduction reaction will increase and can be detrimental. As a result of the vitality of reducing O₂ in prokaryotes, knowledge on bd oxidases can help develop drugs that target these enzymes to combat bacterial infection.<ref name=”Borisov”>PMID:21756872</ref>
 +
== References ==
== References ==
<references/>
<references/>

Revision as of 19:16, 20 April 2020

Contents

bd oxidase; Geobacillus thermodenitrificans

bd oxidase (PDB: 5doq)

Drag the structure with the mouse to rotate

Biological Importance of O₂ reduction

Oxygen toxicity is a fatal problem among all organisms, but can easily occur in prokaryotes due to their low oxygen tolerance. In prokaryotes, the cytochrome bd oxygen reductases function to quickly reduce the concentration of O₂ into H₂O to protect the cell from detrimental effects. Without proper functioning of these enzymes, or if O₂ concentrations are too high, the concentrations of the intermediates formed from the reduction reaction will increase and can be detrimental. As a result of the vitality of reducing O₂ in prokaryotes, knowledge on bd oxidases can help develop drugs that target these enzymes to combat bacterial infection.[7]

References

  1. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
  3. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol. 2005 Mar;187(6):2020-9. doi: 10.1128/JB.187.6.2020-2029.2005. PMID:15743950 doi:http://dx.doi.org/10.1128/JB.187.6.2020-2029.2005
  4. Junemann S. Cytochrome bd terminal oxidase. Biochim Biophys Acta. 1997 Aug 22;1321(2):107-27. doi:, 10.1016/s0005-2728(97)00046-7. PMID:9332500 doi:http://dx.doi.org/10.1016/s0005-2728(97)00046-7
  5. Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
  6. Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4
  7. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011 Nov;1807(11):1398-413. doi:, 10.1016/j.bbabio.2011.06.016. Epub 2011 Jul 1. PMID:21756872 doi:http://dx.doi.org/10.1016/j.bbabio.2011.06.016

Student Contributors

Emma H Harris

Carson E Middlebrook

Personal tools