Sandbox Reserved 1607
From Proteopedia
(Difference between revisions)
Line 2: | Line 2: | ||
<StructureSection load='6DT0' size='350' frame='true' side='right' caption='Calcium Uniporter 6DT0' scene=’’> | <StructureSection load='6DT0' size='350' frame='true' side='right' caption='Calcium Uniporter 6DT0' scene=’’> | ||
==Introduction== | ==Introduction== | ||
- | + | [https://en.wikipedia.org/wiki/Calcium_signaling Calcium] is a key signaling molecule involved in many physiological functions including muscle contraction, neuron excitability, cell migration and growth. <ref name="Giorgi C" /> The [https://en.wikipedia.org/wiki/Mitochondrion mitochondria] are important regulators of calcium in the body; they orchestrate the regulation of ATP production, cell death, and intracellular calcium signaling. <ref name="Fan C" /> The process of calcium regulation in the mitochondria is as follows: Calcium moves in one direction through the mitochondria from the [https://en.wikipedia.org/wiki/Intermembrane_space intermembrane space] through the [https://en.wikipedia.org/wiki/Inner_mitochondrial_membrane inner mitochondrial membrane] into the [https://en.wikipedia.org/wiki/Mitochondrial_matrix matrix]. The matrix is more negatively charged driven by the [https://en.wikipedia.org/wiki/Electron_transport_chain electron transport chain] which facilitates calcium movement with its concentration gradient. Maintaining this concentration gradient and the [https://en.wikipedia.org/wiki/Homeostasis homeostasis] of calcium in the mitochondria is the calcium uniporter (MCU). The MCU is a complex composed of regulatory subunits including mitochondrial calcium uptake (MICU), essential MICU regulator (EMRE), MCU regulatory subunit b (MCUb), and MCU regulator 1 (MCUR1). <ref name="Fan C" /> On the outside of the uniporter portion of the MCU are mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2). MICU1 and MICU2 act as gatekeepers by setting the calcium uptake threshold for activation of MCU, only allowing calcium uptake at high calcium concentrations. MICU1 and MICU2 bind together and associate with another external subunit, EMRE, to regulate calcium acquisition by the MCU. EMRE connects the MICU1 and MICU2 sensors to MCU therefore regulating calcium uptake for the protein. <ref name="Fan C" /> | |
- | Calcium is a | + | [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy Cryogenic electron microscopy] (Cryo-EM) was instrumental in outlining the complete structure of this protein. This analysis led to the discovery of key residues within the structure of the MCU as well as providing a structural framework for understanding the mechanism by with the MCU functions. <ref name="Giorgi C" /> |
- | The MCU is a complex. | + | |
- | + | ||
- | + | ||
- | [https://en.wikipedia.org/wiki/Cryogenic_electron_microscopy Cryogenic electron microscopy] (Cryo-EM) was instrumental in outlining the complete structure of this protein. <ref name="Giorgi C" | + | |
== Structural highlights and mechanism == | == Structural highlights and mechanism == |
Current revision
Mitochondrial Calcium Uniporter
|
References
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedGiorgi_C
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Fan C, Fan M, Orlando BJ, Fastman NM, Zhang J, Xu Y, Chambers MG, Xu X, Perry K, Liao M, Feng L. X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature. 2018 Jul 11. pii: 10.1038/s41586-018-0330-9. doi:, 10.1038/s41586-018-0330-9. PMID:29995856 doi:http://dx.doi.org/10.1038/s41586-018-0330-9
- ↑ Yoo J, Wu M, Yin Y, Herzik MA Jr, Lander GC, Lee SY. Cryo-EM structure of a mitochondrial calcium uniporter. Science. 2018 Jun 28. pii: science.aar4056. doi: 10.1126/science.aar4056. PMID:29954988 doi:http://dx.doi.org/10.1126/science.aar4056