Sandbox Reserved 1625

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
<scene name='83/832931/Full/4'>Cytochrome bd oxidases</scene> are quinol-dependent [https://en.wikipedia.org/wiki/Transmembrane_protein transmembrane] (Fig. 1) terminal [https://en.wikipedia.org/wiki/Oxidase oxidases] found exclusively in [https://en.wikipedia.org/wiki/Prokaryote prokaryotes].<ref name="Safarian">PMID: 27126043</ref> With a very high oxygen affinity, bd oxidases play a vital role in the [https://en.wikipedia.org/wiki/Oxidative_phosphorylation oxidative phosphorylation] pathway in both gram-positive and gram-negative bacteria. Cytochrome ''bd'' oxidase's responsibility in the oxidative phosphorylation pathway also allows it to act as a key survival factor in the bacterial stress response against antibacterial drugs <ref name="Safarian">PMID: 31604309</ref>, hypoxia, cyanide, [https://en.wikipedia.org/wiki/Nitric_oxide nitric oxide], and H<sub>2</sub>O<sub>2</sub><ref name="Harikishore">PMID: 31939065</ref>. With their essential roles in bacterial survival, ''bd'' oxidases have been pursued as ideal targets for antimicrobial drug development. <ref name="Boot">PMID: 28878275</ref>
<scene name='83/832931/Full/4'>Cytochrome bd oxidases</scene> are quinol-dependent [https://en.wikipedia.org/wiki/Transmembrane_protein transmembrane] (Fig. 1) terminal [https://en.wikipedia.org/wiki/Oxidase oxidases] found exclusively in [https://en.wikipedia.org/wiki/Prokaryote prokaryotes].<ref name="Safarian">PMID: 27126043</ref> With a very high oxygen affinity, bd oxidases play a vital role in the [https://en.wikipedia.org/wiki/Oxidative_phosphorylation oxidative phosphorylation] pathway in both gram-positive and gram-negative bacteria. Cytochrome ''bd'' oxidase's responsibility in the oxidative phosphorylation pathway also allows it to act as a key survival factor in the bacterial stress response against antibacterial drugs <ref name="Safarian">PMID: 31604309</ref>, hypoxia, cyanide, [https://en.wikipedia.org/wiki/Nitric_oxide nitric oxide], and H<sub>2</sub>O<sub>2</sub><ref name="Harikishore">PMID: 31939065</ref>. With their essential roles in bacterial survival, ''bd'' oxidases have been pursued as ideal targets for antimicrobial drug development. <ref name="Boot">PMID: 28878275</ref>
[[Image:Transmembrane_bd_ox.png|550 px|center|thumb|''Figure 1''. Cartoon model of cytochrome bd-oxidase in ''E. coli''. Dashed lines represent borders of [https://en.wikipedia.org/wiki/Cytoplasm cytoplasmic] and [https://en.wikipedia.org/wiki/Periplasm periplasmic] regions. A quinol bound in the periplasmic <scene name='83/832924/Q_loop/3'>Q-loop</scene> is [https://en.wikipedia.org/wiki/Redox oxidized] and releases protons into the periplasmic space, generating a [https://en.wikipedia.org/wiki/Electrochemical_gradient proton gradient]. Protons and oxygen atoms from the cytoplasmic side enter cytochrome ''bd'' oxidase through specific channels. Oxygen is [https://en.wikipedia.org/wiki/Redox reduced] to water, which is released into the cytoplasmic space. Blue = CydA; green = CydB; yellow = CydX; pink = CydS. [[https://www.rcsb.org/structure/6RX4 PDB: 6RX4]]]]
[[Image:Transmembrane_bd_ox.png|550 px|center|thumb|''Figure 1''. Cartoon model of cytochrome bd-oxidase in ''E. coli''. Dashed lines represent borders of [https://en.wikipedia.org/wiki/Cytoplasm cytoplasmic] and [https://en.wikipedia.org/wiki/Periplasm periplasmic] regions. A quinol bound in the periplasmic <scene name='83/832924/Q_loop/3'>Q-loop</scene> is [https://en.wikipedia.org/wiki/Redox oxidized] and releases protons into the periplasmic space, generating a [https://en.wikipedia.org/wiki/Electrochemical_gradient proton gradient]. Protons and oxygen atoms from the cytoplasmic side enter cytochrome ''bd'' oxidase through specific channels. Oxygen is [https://en.wikipedia.org/wiki/Redox reduced] to water, which is released into the cytoplasmic space. Blue = CydA; green = CydB; yellow = CydX; pink = CydS. [[https://www.rcsb.org/structure/6RX4 PDB: 6RX4]]]]
-
The overall mechanism of ''bd'' oxidases involves an exergonic [https://en.wikipedia.org/wiki/Dioxygen_in_biological_reactions reduction of molecular oxygen] into water (Fig. 2). During this reaction, a proton gradient is generated in order to assist in the conservation of energy. <ref name="Belevich">PMID: 17690093</ref> Unlike other terminal oxidases, bd oxidases do not use a proton pump. Instead, bd oxidases use a form of vectorial chemistry that releases protons from the quinol oxidation into the positive, periplasmic side of the membrane. Protons that are required for the water formation are then consumed from the negative, cytoplasmic side of the membrane, thus creating the previously mentioned proton gradient.
+
The overall mechanism of ''bd'' oxidases involves an exergonic [https://en.wikipedia.org/wiki/Dioxygen_in_biological_reactions reduction of molecular oxygen] into water (Fig. 2). During this reaction, a proton gradient is generated in order to assist in the conservation of energy. <ref name="Belevich">PMID: 17690093</ref> Unlike other terminal oxidases, bd oxidases do not use a proton pump. Instead, bd oxidases use a form of vectorial chemistry that releases protons from the quinol oxidation into the positive, periplasmic side of the membrane. Protons that are required for the water formation are then consumed from the negative, cytoplasmic side of the membrane, thus creating the proton gradient.
[[Image:proton graadient.jpg|550 px|center|thumb|''Figure 2''. Overall schematic representation of the reductive cycle of cytochrome bd oxidase. <ref name= "Giuffre">PMID: 24486503</ref> In this cycle, molecular oxygen is reduced into water using the quinol as a reducing substrate. Cytochrome ''bd'' oxidase releases 2 H<sup>+</sup> for each 2 electrons transferred due to the menaquinol oxidation site located on the outer face of the cytoplasmic membrane. <ref name="Fischer">PMID: 29784883</ref> The ''bd'' oxidase completes a redox loop when coupled with quinone [https://en.wikipedia.org/wiki/Dehydrogenase dehydrogenases] that receive electrons from [https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide NADH], [https://en.wikipedia.org/wiki/Pyruvic_acid pyruvate], [https://en.wikipedia.org/wiki/Lactic_acid D-lactate], or [https://en.wikipedia.org/wiki/Acyl-CoA acyl coenzyme A]. The three hemes essential to the electron transfer are located near the periplasmic space. Heme b<sub>558</sub> is involved in quinol oxidation and heme d serves as the site where O<sub>2</sub> binds and becomes reduced to H<sub>2</sub>O. The membrane potential is generated mainly from proton transfer from the cytoplasm towards the active site on the periplasmic side of the membrane.]] This page will focus on the structure and overall function of the ''bd'' oxidase in [https://en.wikipedia.org/wiki/Escherichia_coli ''E. coli'']. This ''bd'' oxidase is part of the long(L) quinol-binding domain subfamily of terminal oxidases. The L-subfamily of ''bd'' oxidases are responsible for the survival of acute infectious diseases such as ''E. coli'' and [https://en.wikipedia.org/wiki/Salmonella ''Salmonella'']. The 6RX4's three <scene name='83/832931/Heme/4'>heme</scene> groups, its periplasmically exposed <scene name='83/832924/Q_loop/3'>Q-loop</scene>, and <scene name='83/832942/Four_subunits_labelled_6rx4/3'>four protein subunits</scene> will be the primary focus when explaining how the structure of ''bd'' oxidase allows it to catalyze the reduction of molecular oxygen into water.
[[Image:proton graadient.jpg|550 px|center|thumb|''Figure 2''. Overall schematic representation of the reductive cycle of cytochrome bd oxidase. <ref name= "Giuffre">PMID: 24486503</ref> In this cycle, molecular oxygen is reduced into water using the quinol as a reducing substrate. Cytochrome ''bd'' oxidase releases 2 H<sup>+</sup> for each 2 electrons transferred due to the menaquinol oxidation site located on the outer face of the cytoplasmic membrane. <ref name="Fischer">PMID: 29784883</ref> The ''bd'' oxidase completes a redox loop when coupled with quinone [https://en.wikipedia.org/wiki/Dehydrogenase dehydrogenases] that receive electrons from [https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide NADH], [https://en.wikipedia.org/wiki/Pyruvic_acid pyruvate], [https://en.wikipedia.org/wiki/Lactic_acid D-lactate], or [https://en.wikipedia.org/wiki/Acyl-CoA acyl coenzyme A]. The three hemes essential to the electron transfer are located near the periplasmic space. Heme b<sub>558</sub> is involved in quinol oxidation and heme d serves as the site where O<sub>2</sub> binds and becomes reduced to H<sub>2</sub>O. The membrane potential is generated mainly from proton transfer from the cytoplasm towards the active site on the periplasmic side of the membrane.]] This page will focus on the structure and overall function of the ''bd'' oxidase in [https://en.wikipedia.org/wiki/Escherichia_coli ''E. coli'']. This ''bd'' oxidase is part of the long(L) quinol-binding domain subfamily of terminal oxidases. The L-subfamily of ''bd'' oxidases are responsible for the survival of acute infectious diseases such as ''E. coli'' and [https://en.wikipedia.org/wiki/Salmonella ''Salmonella'']. The 6RX4's three <scene name='83/832931/Heme/4'>heme</scene> groups, its periplasmically exposed <scene name='83/832924/Q_loop/3'>Q-loop</scene>, and <scene name='83/832942/Four_subunits_labelled_6rx4/3'>four protein subunits</scene> will be the primary focus when explaining how the structure of ''bd'' oxidase allows it to catalyze the reduction of molecular oxygen into water.
==Structure==
==Structure==

Revision as of 05:05, 21 April 2020

This Sandbox is Reserved from Jan 13 through September 1, 2020 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1598 through Sandbox Reserved 1627.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Cytochrome bd-1 oxidase in Escherichia coli

Cartoon representation of E. coli cytochrome bd-1 oxidase designed from PDB: 6RX4. Blue= CydA; green= CydB; yellow= CydX; pink= CydS; gray = hemes and UQ-8.

Drag the structure with the mouse to rotate

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
  2. 2.0 2.1 Harikishore A, Chong SSM, Ragunathan P, Bates RW, Gruber G. Targeting the menaquinol binding loop of mycobacterial cytochrome bd oxidase. Mol Divers. 2020 Jan 14. pii: 10.1007/s11030-020-10034-0. doi:, 10.1007/s11030-020-10034-0. PMID:31939065 doi:http://dx.doi.org/10.1007/s11030-020-10034-0
  3. Boot M, Jim KK, Liu T, Commandeur S, Lu P, Verboom T, Lill H, Bitter W, Bald D. A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection. Sci Rep. 2017 Sep 6;7(1):10665. doi: 10.1038/s41598-017-10944-4. PMID:28878275 doi:http://dx.doi.org/10.1038/s41598-017-10944-4
  4. Belevich I, Borisov VB, Verkhovsky MI. Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement. J Biol Chem. 2007 Sep 28;282(39):28514-9. doi: 10.1074/jbc.M705562200. Epub 2007 , Aug 9. PMID:17690093 doi:http://dx.doi.org/10.1074/jbc.M705562200
  5. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
  6. Fischer M, Falke D, Naujoks C, Sawers RG. Cytochrome bd Oxidase Has an Important Role in Sustaining Growth and Development of Streptomyces coelicolor A3(2) under Oxygen-Limiting Conditions. J Bacteriol. 2018 Jul 25;200(16). pii: JB.00239-18. doi: 10.1128/JB.00239-18., Print 2018 Aug 15. PMID:29784883 doi:http://dx.doi.org/10.1128/JB.00239-18
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4
  8. 8.0 8.1 8.2 8.3 8.4 Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
  9. Moosa A, Lamprecht DA, Arora K, Barry CE 3rd, Boshoff HIM, Ioerger TR, Steyn AJC, Mizrahi V, Warner DF. Susceptibility of Mycobacterium tuberculosis Cytochrome bd Oxidase Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome c. Antimicrob Agents Chemother. 2017 Sep 22;61(10). pii: AAC.01338-17. doi:, 10.1128/AAC.01338-17. Print 2017 Oct. PMID:28760899 doi:http://dx.doi.org/10.1128/AAC.01338-17
  10. 10.0 10.1 Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, Gillis CC, Buttner L, Smoot MP, Behrendt CL, Cherry S, Santos RL, Hooper LV, Winter SE. Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host Microbe. 2017 Feb 8;21(2):208-219. doi: 10.1016/j.chom.2017.01.005. PMID:28182951 doi:http://dx.doi.org/10.1016/j.chom.2017.01.005
  11. 11.0 11.1 Shepherd M, Achard ME, Idris A, Totsika M, Phan MD, Peters KM, Sarkar S, Ribeiro CA, Holyoake LV, Ladakis D, Ulett GC, Sweet MJ, Poole RK, McEwan AG, Schembri MA. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci Rep. 2016 Oct 21;6:35285. doi: 10.1038/srep35285. PMID:27767067 doi:http://dx.doi.org/10.1038/srep35285
  12. 12.0 12.1 Arora K, Ochoa-Montano B, Tsang PS, Blundell TL, Dawes SS, Mizrahi V, Bayliss T, Mackenzie CJ, Cleghorn LA, Ray PC, Wyatt PG, Uh E, Lee J, Barry CE 3rd, Boshoff HI. Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014 Nov;58(11):6962-5. doi: 10.1128/AAC.03486-14., Epub 2014 Aug 25. PMID:25155596 doi:http://dx.doi.org/10.1128/AAC.03486-14
  13. Galvan AE, Chalon MC, Rios Colombo NS, Schurig-Briccio LA, Sosa-Padilla B, Gennis RB, Bellomio A. Microcin J25 inhibits ubiquinol oxidase activity of purified cytochrome bd-I from Escherichia coli. Biochimie. 2019 May;160:141-147. doi: 10.1016/j.biochi.2019.02.007. Epub 2019 Feb, 19. PMID:30790617 doi:http://dx.doi.org/10.1016/j.biochi.2019.02.007
  14. Lu P, Heineke MH, Koul A, Andries K, Cook GM, Lill H, van Spanning R, Bald D. The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Sci Rep. 2015 May 27;5:10333. doi: 10.1038/srep10333. PMID:26015371 doi:http://dx.doi.org/10.1038/srep10333

Student Contributors

  • Grace Bassler
  • Emily Neal
  • Marisa Villarreal
Personal tools