|
|
Line 3: |
Line 3: |
| <StructureSection load='6v78' size='340' side='right'caption='[[6v78]], [[Resolution|resolution]] 2.60Å' scene=''> | | <StructureSection load='6v78' size='340' side='right'caption='[[6v78]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6v78]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_pneumoniae"_(schroeter_1886)_flugge_1886 "bacillus pneumoniae" (schroeter 1886) flugge 1886]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6V78 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6V78 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6v78]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Klebsiella_pneumoniae Klebsiella pneumoniae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6V78 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6V78 FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ompK37, ompN_1, ompN_2, ompS2, BANRA_00477, C3483_14590, C3F39_02150, C7V41_10070, CSC88_04530, DD581_25170, FJR44_14030, FNY87_08485, NCTC11679_03052, NCTC13465_01341, NCTC13635_00771, PMK1_03772, SAMEA104305404_06668, SAMEA104567806_00300, SAMEA23986918_02116 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=573 "Bacillus pneumoniae" (Schroeter 1886) Flugge 1886])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6v78 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6v78 OCA], [http://pdbe.org/6v78 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6v78 RCSB], [http://www.ebi.ac.uk/pdbsum/6v78 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6v78 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6v78 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6v78 OCA], [https://pdbe.org/6v78 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6v78 RCSB], [https://www.ebi.ac.uk/pdbsum/6v78 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6v78 ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/S5UCA2_KLEPN S5UCA2_KLEPN] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 16: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 6v78" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6v78" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Porin 3D structures|Porin 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Klebsiella pneumoniae]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lithgow, T]] | + | [[Category: Lithgow T]] |
- | [[Category: Rocker, A]] | + | [[Category: Rocker A]] |
- | [[Category: Membrane protein]]
| + | |
- | [[Category: Porin gram-negative outer membrane protein]]
| + | |
| Structural highlights
Function
S5UCA2_KLEPN
Publication Abstract from PubMed
In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like beta-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for beta-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae IMPORTANCE Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and beta-lactamase inhibitors could be effective on porin-deficient K. pneumoniae Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant-and collateral drug-resistant-phenotypes in K. pneumoniae.
Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae.,Rocker A, Lacey JA, Belousoff MJ, Wilksch JJ, Strugnell RA, Davies MR, Lithgow T mBio. 2020 Apr 14;11(2). pii: mBio.00603-20. doi: 10.1128/mBio.00603-20. PMID:32291303[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Rocker A, Lacey JA, Belousoff MJ, Wilksch JJ, Strugnell RA, Davies MR, Lithgow T. Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae. mBio. 2020 Apr 14;11(2). pii: mBio.00603-20. doi: 10.1128/mBio.00603-20. PMID:32291303 doi:http://dx.doi.org/10.1128/mBio.00603-20
|