6yam
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='6yam' size='340' side='right'caption='[[6yam]], [[Resolution|resolution]] 3.60Å' scene=''> | <StructureSection load='6yam' size='340' side='right'caption='[[6yam]], [[Resolution|resolution]] 3.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6yam]] is a | + | <table><tr><td colspan='2'>[[6yam]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6YAM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6YAM FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.6Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=C4J:(2~{S})-2-azanyl-4-[5-[(2~{S},3~{R},4~{S},5~{S})-3,4-bis(oxidanyl)-5-(phosphonooxymethyl)oxolan-2-yl]-3-methyl-2,6-bis(oxidanylidene)pyrimidin-1-yl]butanoic+acid'>C4J</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=T6A:N-[N-(9-B-D-RIBOFURANOSYLPURIN-6-YL)CARBAMOYL]THREONINE-5-MONOPHOSPHATE'>T6A</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6yam FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6yam OCA], [https://pdbe.org/6yam PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6yam RCSB], [https://www.ebi.ac.uk/pdbsum/6yam PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6yam ProSAT]</span></td></tr> | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | |
</table> | </table> | ||
- | == Function == | ||
- | [[http://www.uniprot.org/uniprot/G1U971_RABIT G1U971_RABIT]] Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation.[HAMAP-Rule:MF_03002] [[http://www.uniprot.org/uniprot/G1T3L2_RABIT G1T3L2_RABIT]] Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation.[HAMAP-Rule:MF_03010] [[http://www.uniprot.org/uniprot/G1SLC2_RABIT G1SLC2_RABIT]] Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression.[HAMAP-Rule:MF_03005] [[http://www.uniprot.org/uniprot/G1SLW8_RABIT G1SLW8_RABIT]] Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation.[HAMAP-Rule:MF_03012] [[http://www.uniprot.org/uniprot/G1TLT8_RABIT G1TLT8_RABIT]] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Also functions as a cell surface receptor for laminin. Plays a role in cell adhesion to the basement membrane and in the consequent activation of signaling transduction pathways. May play a role in cell fate determination and tissue morphogenesis. Also acts as a receptor for several other ligands, including the pathogenic prion protein, viruses, and bacteria. Acts as a PPP1R16B-dependent substrate of PPP1CA.[HAMAP-Rule:MF_03016] [[http://www.uniprot.org/uniprot/G1TN72_RABIT G1TN72_RABIT]] May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity).[HAMAP-Rule:MF_03122] [[http://www.uniprot.org/uniprot/G1SUC8_RABIT G1SUC8_RABIT]] Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S preinitiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. Required for nonsense-mediated mRNA decay (NMD); may act in conjunction with UPF2 to divert mRNAs from translation to the NMD pathway. May interact with MCM7 and EPAS1 and regulate the proteasome-mediated degradation of these proteins.[HAMAP-Rule:MF_03004] [[http://www.uniprot.org/uniprot/A0A5F9C991_RABIT A0A5F9C991_RABIT]] RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression.[HAMAP-Rule:MF_03000] | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 20: | Line 17: | ||
</div> | </div> | ||
<div class="pdbe-citations 6yam" style="background-color:#fffaf0;"></div> | <div class="pdbe-citations 6yam" style="background-color:#fffaf0;"></div> | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Ribosome 3D structures|Ribosome 3D structures]] | ||
+ | *[[3D sructureseceptor for activated protein kinase C 1|3D sructureseceptor for activated protein kinase C 1]] | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 26: | Line 27: | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Oryctolagus cuniculus]] | [[Category: Oryctolagus cuniculus]] | ||
- | [[Category: Bochler | + | [[Category: Bochler A]] |
- | [[Category: Guca | + | [[Category: Guca E]] |
- | [[Category: Hashem | + | [[Category: Hashem Y]] |
- | [[Category: Simonetti | + | [[Category: Simonetti A]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Mammalian 48S late-stage translation initiation complex (LS48S+eIF3 IC) with beta-globin mRNA
|