6tms
From Proteopedia
(Difference between revisions)
												
			
			| Line 1: | Line 1: | ||
| ==Crystal structure of a de novo designed hexameric helical-bundle protein== | ==Crystal structure of a de novo designed hexameric helical-bundle protein== | ||
| - | <StructureSection load='6tms' size='340' side='right'caption='[[6tms]]' scene=''> | + | <StructureSection load='6tms' size='340' side='right'caption='[[6tms]], [[Resolution|resolution]] 2.70Å' scene=''> | 
| == Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6TMS OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6TMS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6tms]] is a 14 chain structure with sequence from [http://en.wikipedia.org/wiki/Synthetic_construct_sequences Synthetic construct sequences] and [http://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6TMS OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6TMS FirstGlance]. <br> | 
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6tms FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6tms OCA], [http://pdbe.org/6tms PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6tms RCSB], [http://www.ebi.ac.uk/pdbsum/6tms PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6tms ProSAT]</span></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | 
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6tms FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6tms OCA], [http://pdbe.org/6tms PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6tms RCSB], [http://www.ebi.ac.uk/pdbsum/6tms PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6tms ProSAT]</span></td></tr> | ||
| </table> | </table> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Transmembrane channels and pores have key roles in fundamental biological processes(1) and in biotechnological applications such as DNA nanopore sequencing(2-4), resulting in considerable interest in the design of pore-containing proteins. Synthetic amphiphilic peptides have been found to form ion channels(5,6), and there have been recent advances in de novo membrane protein design(7,8) and in redesigning naturally occurring channel-containing proteins(9,10). However, the de novo design of stable, well-defined transmembrane protein pores that are capable of conducting ions selectively or are large enough to enable the passage of small-molecule fluorophores remains an outstanding challenge(11,12). Here we report the computational design of protein pores formed by two concentric rings of alpha-helices that are stable and monodisperse in both their water-soluble and their transmembrane forms. Crystal structures of the water-soluble forms of a 12-helical pore and a 16-helical pore closely match the computational design models. Patch-clamp electrophysiology experiments show that, when expressed in insect cells, the transmembrane form of the 12-helix pore enables the passage of ions across the membrane with high selectivity for potassium over sodium; ion passage is blocked by specific chemical modification at the pore entrance. When incorporated into liposomes using in vitro protein synthesis, the transmembrane form of the 16-helix pore-but not the 12-helix pore-enables the passage of biotinylated Alexa Fluor 488. A cryo-electron microscopy structure of the 16-helix transmembrane pore closely matches the design model. The ability to produce structurally and functionally well-defined transmembrane pores opens the door to the creation of designer channels and pores for a wide variety of applications. | ||
| + | |||
| + | Computational design of transmembrane pores.,Xu C, Lu P, Gamal El-Din TM, Pei XY, Johnson MC, Uyeda A, Bick MJ, Xu Q, Jiang D, Bai H, Reggiano G, Hsia Y, Brunette TJ, Dou J, Ma D, Lynch EM, Boyken SE, Huang PS, Stewart L, DiMaio F, Kollman JM, Luisi BF, Matsuura T, Catterall WA, Baker D Nature. 2020 Sep;585(7823):129-134. doi: 10.1038/s41586-020-2646-5. Epub 2020 Aug, 26. PMID:32848250<ref>PMID:32848250</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| + | <div class="pdbe-citations 6tms" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
| __TOC__ | __TOC__ | ||
| </StructureSection> | </StructureSection> | ||
| [[Category: Large Structures]] | [[Category: Large Structures]] | ||
| - | [[Category: Baker D]] | + | [[Category: Synthetic construct]] | 
| - | [[Category: Luisi  | + | [[Category: Synthetic construct sequences]] | 
| - | [[Category: Pei  | + | [[Category: Baker, D]] | 
| - | [[Category: Xu C]] | + | [[Category: Luisi, B F]] | 
| + | [[Category: Pei, X Y]] | ||
| + | [[Category: Xu, C]] | ||
| + | [[Category: Biosynthetic protein]] | ||
| + | [[Category: Computational protein design]] | ||
| + | [[Category: De novo protein]] | ||
| + | [[Category: Helical bundle]] | ||
| + | [[Category: Hexamer]] | ||
| + | [[Category: Pore]] | ||
Revision as of 10:10, 16 September 2020
Crystal structure of a de novo designed hexameric helical-bundle protein
| 
 | |||||||||||
