6rsy
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='6rsy' size='340' side='right'caption='[[6rsy]], [[Resolution|resolution]] 2.95Å' scene=''> | <StructureSection load='6rsy' size='340' side='right'caption='[[6rsy]], [[Resolution|resolution]] 2.95Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'> | + | <table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6RSY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6RSY FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.95Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6rsy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6rsy OCA], [https://pdbe.org/6rsy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6rsy RCSB], [https://www.ebi.ac.uk/pdbsum/6rsy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6rsy ProSAT]</span></td></tr> |
</table> | </table> | ||
- | == Disease == | ||
- | [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.<ref>PMID:3532124</ref> <ref>PMID:1336137</ref> <ref>PMID:7554280</ref> <ref>PMID:4586824</ref> <ref>PMID:8084451</ref> <ref>PMID:12119416</ref> <ref>PMID:12796775</ref> <ref>PMID:16901902</ref> <ref>PMID:16491088</ref> <ref>PMID:17646174</ref> <ref>PMID:18835253</ref> <ref>PMID:18395224</ref> <ref>PMID:19284997</ref> | ||
- | == Function == | ||
- | [[http://www.uniprot.org/uniprot/1A02_HUMAN 1A02_HUMAN]] Involved in the presentation of foreign antigens to the immune system. [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Tumor-associated peptide-human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface-expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents. | ||
- | + | ==See Also== | |
- | + | *[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] | |
- | + | *[[MHC 3D structures|MHC 3D structures]] | |
- | + | *[[MHC I 3D structures|MHC I 3D structures]] | |
- | + | ||
- | + | ||
- | + | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: Human]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Robinson | + | [[Category: Robinson RA]] |
- | [[Category: Srikannathasan | + | [[Category: Srikannathasan V]] |
- | + | ||
- | + |
Current revision
The complex between TCR a7b2 and human Class I MHC HLA-A0201-WT1 with the bound RMFPNAPYL peptide.
|