User:R. Jeremy Johnson/bd Oxidase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
="bd" oxidase ''Geobacillus thermodenitrificans''=
="bd" oxidase ''Geobacillus thermodenitrificans''=
-
<scene name='83/838655/Bdoxidase_structure_full/3'>"bd oxidase"</scene>; ''Geobacillus thermodenitrificans''
+
[https://www.uniprot.org/proteomes/UP000001578 ''G. thermodenitrificans''] is a facultative aerobic thermophilic bacterium that utilizes the bd oxidase mechanism (<scene name='83/838655/Bdoxidase_structure_full/3'>Overview "bd" oxidase ''Geobacillus thermodenitrificans''</scene>). The oxygen enters the enzyme through the selective <scene name='83/832926/Potential_oxygen_entry_site/2'>oxygen entry site</scene> that funnels the extracellular oxygen to <scene name='83/838655/Bd_oxidase_heme_d/2'>Heme D</scene> in the active site. The electrons for the reaction are provided by a ubiquinone molecule bound to the <scene name='83/838655/Bdoxidase_q_loop/3'>Q loop</scene>. The protons for the reaction are provided by one of two <scene name='83/838655/Bdoxidase_proton_pathways/1'>potential proton pathways</scene>, either the <scene name='83/838655/Bdoxidase_cyda_pathway/6'>CydA pathway</scene> or <scene name='83/838655/Bdoxidase_cydb_pathway/3'>CydB pathway</scene>. Both of the proton pathways utilize the intracellular water molecules for the proton source, and shuttle them to <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene>.
-
[https://www.uniprot.org/proteomes/UP000001578 ''G. thermodenitrificans''] is a facultative aerobic thermophilic bacterium that utilizes the bd oxidase mechanism. The oxygen enters the enzyme through the selective <scene name='83/832926/Potential_oxygen_entry_site/2'>oxygen entry site</scene> that funnels the extracellular oxygen to <scene name='83/838655/Bd_oxidase_heme_d/2'>Heme D</scene> in the active site. The electrons for the reaction are provided by a ubiquinone molecule bound to the <scene name='83/838655/Bdoxidase_q_loop/3'>Q loop</scene>. The protons for the reaction are provided by one of two <scene name='83/838655/Bdoxidase_proton_pathways/1'>potential proton pathways</scene>, either the <scene name='83/838655/Bdoxidase_cyda_pathway/6'>CydA pathway</scene> or <scene name='83/838655/Bdoxidase_cydb_pathway/3'>CydB pathway</scene>. Both of the proton pathways utilize the intracellular water molecules for the proton source, and shuttle them to <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene>.
+
The <scene name='83/838655/Bdoxidase_structure_full/4'>''G. thermodenitrificans'' overall structure</scene> contains <scene name='83/838655/Bdoxidase_only_helicies/2'> 19 transmembrane helices</scene> that are arranged in a nearly oval shape.<ref name = ”Safarian” /> The protein contains two structurally similar subunits, <scene name='83/838655/Bdoxidase_cyda_subunit/2'>CydA</scene>, seen in <font color='blue'><b>blue</b></font>, and <scene name='83/838655/Bdoxidase_cydb_subunit/2'>CydB</scene>, seen in <font color='red'><b>red</b></font>, each containing nine helices, and one smaller subunit, <scene name='83/838655/Bdoxidase_cydx_subunit/2'>CydX</scene>, in <font color='teal'><b>teal</b></font>, with one transmembrane helix. These subunits interact using hydrophobic residues and symmetry at the interfaces. The CydX subunit, whose function is not currently known, is positioned in the same way as CydS, a separate subunit that is found in the bd oxidase homologue from [https://www.rcsb.org/structure/6RKO ''E. coli'' bd oxidase], but is not found in ''G. thermodenitrificans''. Due to its similar structure and position to CydS, CydX has been hypothesized to potentially stabilize <scene name='83/838655/Bd_oxidase_heme_558/3'>Heme B558</scene> during potential structural rearrangements of the Q loop upon binding and oxidation of ubiquinone (Figure 1), the function of CydS in [https://en.wikipedia.org/wiki/Escherichia_coli ''E. coli'']<ref name = ”Safarian” /> The <scene name='83/838655/Bdoxidase_q_loop/3'>Q loop</scene> is a hydrophilic region above Cyd A. The lack of [https://en.wikipedia.org/wiki/Hydrogen_bond hydrogen bonding] in this hydrophobic protein allows the protein to be flexible and go through a large conformational change for reduction of dioxygen. <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene> is mostly involved in the proton pathway, and <scene name='83/838655/Bd_oxidase_heme_d/2'>Heme D</scene> is involved with the oxygen pathway.
The <scene name='83/838655/Bdoxidase_structure_full/4'>''G. thermodenitrificans'' overall structure</scene> contains <scene name='83/838655/Bdoxidase_only_helicies/2'> 19 transmembrane helices</scene> that are arranged in a nearly oval shape.<ref name = ”Safarian” /> The protein contains two structurally similar subunits, <scene name='83/838655/Bdoxidase_cyda_subunit/2'>CydA</scene>, seen in <font color='blue'><b>blue</b></font>, and <scene name='83/838655/Bdoxidase_cydb_subunit/2'>CydB</scene>, seen in <font color='red'><b>red</b></font>, each containing nine helices, and one smaller subunit, <scene name='83/838655/Bdoxidase_cydx_subunit/2'>CydX</scene>, in <font color='teal'><b>teal</b></font>, with one transmembrane helix. These subunits interact using hydrophobic residues and symmetry at the interfaces. The CydX subunit, whose function is not currently known, is positioned in the same way as CydS, a separate subunit that is found in the bd oxidase homologue from [https://www.rcsb.org/structure/6RKO ''E. coli'' bd oxidase], but is not found in ''G. thermodenitrificans''. Due to its similar structure and position to CydS, CydX has been hypothesized to potentially stabilize <scene name='83/838655/Bd_oxidase_heme_558/3'>Heme B558</scene> during potential structural rearrangements of the Q loop upon binding and oxidation of ubiquinone (Figure 1), the function of CydS in [https://en.wikipedia.org/wiki/Escherichia_coli ''E. coli'']<ref name = ”Safarian” /> The <scene name='83/838655/Bdoxidase_q_loop/3'>Q loop</scene> is a hydrophilic region above Cyd A. The lack of [https://en.wikipedia.org/wiki/Hydrogen_bond hydrogen bonding] in this hydrophobic protein allows the protein to be flexible and go through a large conformational change for reduction of dioxygen. <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene> is mostly involved in the proton pathway, and <scene name='83/838655/Bd_oxidase_heme_d/2'>Heme D</scene> is involved with the oxygen pathway.
Line 43: Line 42:
="bd" oxidase ''Escherichia coli''=
="bd" oxidase ''Escherichia coli''=
-
<scene name='83/832931/Full/3'>bd oxidase</scene>; ''Escherichia coli''
+
''bd'' oxidase from [https://en.wikipedia.org/wiki/Escherichia_coli ''E. coli''] is part of the long(L) quinol-binding domain subfamily of terminal oxidases (<scene name='83/832931/Full/3'>Overview "bd" oxidase ''Escherichia coli''</scene>. The L-subfamily of ''bd'' oxidases are responsible for the survival of acute infectious diseases such as ''E. coli'' and [https://en.wikipedia.org/wiki/Salmonella ''Salmonella'']. The cytochrome ''bd'' oxidase's three <scene name='83/832931/Heme/4'>heme</scene> groups, its periplasmically exposed <scene name='83/832924/Q_loop/3'>Q-loop</scene>, and <scene name='83/832942/Four_subunits_labelled_6rx4/3'>four protein subunits</scene> will be the primary focus when explaining how the structure of ''bd'' oxidase allows it to catalyze the reduction of molecular oxygen into water.
-
''bd'' oxidase from [https://en.wikipedia.org/wiki/Escherichia_coli ''E. coli''] is part of the long(L) quinol-binding domain subfamily of terminal oxidases. The L-subfamily of ''bd'' oxidases are responsible for the survival of acute infectious diseases such as ''E. coli'' and [https://en.wikipedia.org/wiki/Salmonella ''Salmonella'']. The cytochrome ''bd'' oxidase's three <scene name='83/832931/Heme/4'>heme</scene> groups, its periplasmically exposed <scene name='83/832924/Q_loop/3'>Q-loop</scene>, and <scene name='83/832942/Four_subunits_labelled_6rx4/3'>four protein subunits</scene> will be the primary focus when explaining how the structure of ''bd'' oxidase allows it to catalyze the reduction of molecular oxygen into water.
+
==Structure==
==Structure==

Revision as of 17:38, 5 May 2020

Cytochrome bd oxidase

Cartoon representation of E. coli cytochrome bd-1 oxidase designed from PDB: 6RX4. Blue= CydA; green= CydB; yellow= CydX; pink= CydS; gray = hemes and UQ-8.

Drag the structure with the mouse to rotate

Proteopedia Resources

Student Contributors

Grace Bassler

Emma H Harris

Carson E Middlebrook

Emily Neal

Marissa Villarreal

Proteopedia Page Contributors and Editors (what is this?)

R. Jeremy Johnson

Personal tools