|
|
| Line 3: |
Line 3: |
| | <StructureSection load='5j7k' size='340' side='right'caption='[[5j7k]], [[Resolution|resolution]] 2.46Å' scene=''> | | <StructureSection load='5j7k' size='340' side='right'caption='[[5j7k]], [[Resolution|resolution]] 2.46Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5j7k]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Synthetic_construct_sequences Synthetic construct sequences]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5J7K OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5J7K FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5j7k]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5J7K OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5J7K FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.46Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5j7c|5j7c]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5j7k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5j7k OCA], [http://pdbe.org/5j7k PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5j7k RCSB], [http://www.ebi.ac.uk/pdbsum/5j7k PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5j7k ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5j7k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5j7k OCA], [https://pdbe.org/5j7k PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5j7k RCSB], [https://www.ebi.ac.uk/pdbsum/5j7k PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5j7k ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| Line 22: |
Line 22: |
| | </StructureSection> | | </StructureSection> |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Synthetic construct sequences]] | + | [[Category: Synthetic construct]] |
| - | [[Category: Buckle, A M]] | + | [[Category: Buckle AM]] |
| - | [[Category: Drinkwater, N]] | + | [[Category: Drinkwater N]] |
| - | [[Category: McGowan, S]] | + | [[Category: McGowan S]] |
| - | [[Category: Porebski, B T]] | + | [[Category: Porebski BT]] |
| - | [[Category: Fibronectin type iii]]
| + | |
| - | [[Category: Fn3]]
| + | |
| - | [[Category: Loop grafting]]
| + | |
| - | [[Category: Protein binding]]
| + | |
| - | [[Category: Protein binding-hydrolase complex]]
| + | |
| - | [[Category: Rational design]]
| + | |
| Structural highlights
Publication Abstract from PubMed
The favorable biophysical attributes of non-antibody scaffolds make them attractive alternatives to monoclonal antibodies. However, due to the well-known stability-function trade-off, these gains tend to be marginal after functional selection. A notable example is the fibronectin Type III (FN3) domain, FNfn10, which has been previously evolved to bind lysozyme with 1 pM affinity (FNfn10-alpha-lys), but suffers from poor thermodynamic and kinetic stability. To explore this stability-function compromise further, we grafted the lysozyme-binding loops from FNfn10-alpha-lys onto our previously engineered, ultra-stable FN3 scaffold, FN3con The resulting variant (FN3con-alpha-lys) bound lysozyme with a markedly reduced affinity, but retained high levels of thermal stability. The crystal structure of FNfn10-alpha-lys in complex with lysozyme revealed unanticipated interactions at the protein-protein interface involving framework residues of FNfn10-alpha-lys, thus explaining the failure to transfer binding via loop grafting. Utilizing this structural information, we redesigned FN3con-alpha-lys and restored picomolar binding affinity to lysozyme, while maintaining thermodynamic stability (with a thermal melting temperature 2-fold higher than that of FNfn10-alpha-lys). FN3con therefore provides an exceptional window of stability to tolerate deleterious mutations, resulting in a substantial advantage for functional design. This study emphasizes the utility of consensus design for the generation of highly stable scaffolds for downstream protein engineering studies.
Circumventing the stability-function trade-off in an engineered FN3 domain.,Porebski BT, Conroy PJ, Drinkwater N, Schofield P, Vazquez-Lombardi R, Hunter MR, Hoke DE, Christ D, McGowan S, Buckle AM Protein Eng Des Sel. 2016 Aug 29. PMID:27578887[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Porebski BT, Conroy PJ, Drinkwater N, Schofield P, Vazquez-Lombardi R, Hunter MR, Hoke DE, Christ D, McGowan S, Buckle AM. Circumventing the stability-function trade-off in an engineered FN3 domain. Protein Eng Des Sel. 2016 Aug 29. PMID:27578887 doi:http://dx.doi.org/10.1093/protein/gzw046
|