6v9k

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==CRYSTAL STRUCTURE OF THE HYBRID C-TERMINAL DOMAIN OF ENZYME I OF THE BACTERIAL PHOSPHOTRANSFERASE SYSTEM FORMED BY HYBRIDIZING THE SCAFFOLD OF THE ESCHERICHIA COLI ENZYME WITH THE ACTIVE SITE LOOPS FROM THE THERMOANAEROBACTER TENGCONGENSIS ENZYME==
==CRYSTAL STRUCTURE OF THE HYBRID C-TERMINAL DOMAIN OF ENZYME I OF THE BACTERIAL PHOSPHOTRANSFERASE SYSTEM FORMED BY HYBRIDIZING THE SCAFFOLD OF THE ESCHERICHIA COLI ENZYME WITH THE ACTIVE SITE LOOPS FROM THE THERMOANAEROBACTER TENGCONGENSIS ENZYME==
-
<StructureSection load='6v9k' size='340' side='right'caption='[[6v9k]]' scene=''>
+
<StructureSection load='6v9k' size='340' side='right'caption='[[6v9k]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6V9K OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6V9K FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6v9k]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6V9K OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6V9K FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6v9k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6v9k OCA], [http://pdbe.org/6v9k PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6v9k RCSB], [http://www.ebi.ac.uk/pdbsum/6v9k PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6v9k ProSAT]</span></td></tr>
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ptsI, E5E93_16640 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphoenolpyruvate--protein_phosphotransferase Phosphoenolpyruvate--protein phosphotransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.3.9 2.7.3.9] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6v9k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6v9k OCA], [http://pdbe.org/6v9k PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6v9k RCSB], [http://www.ebi.ac.uk/pdbsum/6v9k PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6v9k ProSAT]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Conformational disorder is emerging as an important feature of biopolymers, regulating a vast array of cellular functions, including signaling, phase separation, and enzyme catalysis. Here we combine NMR, crystallography, computer simulations, protein engineering, and functional assays to investigate the role played by conformational heterogeneity in determining the activity of the C-terminal domain of bacterial Enzyme I (EIC). In particular, we design chimeric proteins by hybridizing EIC from thermophilic and mesophilic organisms, and we characterize the resulting constructs for structure, dynamics, and biological function. We show that EIC exists as a mixture of active and inactive conformations and that functional regulation is achieved by tuning the thermodynamic balance between active and inactive states. Interestingly, we also present a hybrid thermophilic/mesophilic enzyme that is thermostable and more active than the wild-type thermophilic enzyme, suggesting that hybridizing thermophilic and mesophilic proteins is a valid strategy to engineer thermostable enzymes with significant low-temperature activity.
 +
 +
Hybrid thermophilic/mesophilic enzymes reveal a role for conformational disorder in regulation of bacterial Enzyme I.,Dotas RR, Nguyen TT, Stewart CE Jr, Ghirlando R, Potoyan DA, Venditti V J Mol Biol. 2020 Jun 3. pii: S0022-2836(20)30375-2. doi:, 10.1016/j.jmb.2020.05.024. PMID:32504625<ref>PMID:32504625</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6v9k" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Bacillus coli migula 1895]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Stewart Jr CE]]
+
[[Category: Phosphoenolpyruvate--protein phosphotransferase]]
 +
[[Category: Stewart, C E]]
 +
[[Category: Bacterial phosphotransferase]]
 +
[[Category: Hybrid]]
 +
[[Category: Phosphoenolpyruvate-protein phosphotransferase ptsi]]
 +
[[Category: Transferase]]

Revision as of 10:03, 12 August 2020

CRYSTAL STRUCTURE OF THE HYBRID C-TERMINAL DOMAIN OF ENZYME I OF THE BACTERIAL PHOSPHOTRANSFERASE SYSTEM FORMED BY HYBRIDIZING THE SCAFFOLD OF THE ESCHERICHIA COLI ENZYME WITH THE ACTIVE SITE LOOPS FROM THE THERMOANAEROBACTER TENGCONGENSIS ENZYME

PDB ID 6v9k

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools