|
|
Line 3: |
Line 3: |
| <StructureSection load='6v9k' size='340' side='right'caption='[[6v9k]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='6v9k' size='340' side='right'caption='[[6v9k]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6v9k]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6V9K OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6V9K FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6v9k]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6V9K OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6V9K FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ptsI, E5E93_16640 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphoenolpyruvate--protein_phosphotransferase Phosphoenolpyruvate--protein phosphotransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.3.9 2.7.3.9] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6v9k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6v9k OCA], [https://pdbe.org/6v9k PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6v9k RCSB], [https://www.ebi.ac.uk/pdbsum/6v9k PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6v9k ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6v9k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6v9k OCA], [http://pdbe.org/6v9k PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6v9k RCSB], [http://www.ebi.ac.uk/pdbsum/6v9k PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6v9k ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/PT1_ECOLI PT1_ECOLI] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).<ref>PMID:7876255</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6v9k" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6v9k" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Phosphotransferase 3D structures|Phosphotransferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Phosphoenolpyruvate--protein phosphotransferase]]
| + | [[Category: Stewart Jr CE]] |
- | [[Category: Stewart, C E]] | + | |
- | [[Category: Bacterial phosphotransferase]]
| + | |
- | [[Category: Hybrid]]
| + | |
- | [[Category: Phosphoenolpyruvate-protein phosphotransferase ptsi]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
PT1_ECOLI General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. Enzyme I transfers the phosphoryl group from phosphoenolpyruvate (PEP) to the phosphoryl carrier protein (HPr).[1]
Publication Abstract from PubMed
Conformational disorder is emerging as an important feature of biopolymers, regulating a vast array of cellular functions, including signaling, phase separation, and enzyme catalysis. Here we combine NMR, crystallography, computer simulations, protein engineering, and functional assays to investigate the role played by conformational heterogeneity in determining the activity of the C-terminal domain of bacterial Enzyme I (EIC). In particular, we design chimeric proteins by hybridizing EIC from thermophilic and mesophilic organisms, and we characterize the resulting constructs for structure, dynamics, and biological function. We show that EIC exists as a mixture of active and inactive conformations and that functional regulation is achieved by tuning the thermodynamic balance between active and inactive states. Interestingly, we also present a hybrid thermophilic/mesophilic enzyme that is thermostable and more active than the wild-type thermophilic enzyme, suggesting that hybridizing thermophilic and mesophilic proteins is a valid strategy to engineer thermostable enzymes with significant low-temperature activity.
Hybrid thermophilic/mesophilic enzymes reveal a role for conformational disorder in regulation of bacterial Enzyme I.,Dotas RR, Nguyen TT, Stewart CE Jr, Ghirlando R, Potoyan DA, Venditti V J Mol Biol. 2020 Jun 3. pii: S0022-2836(20)30375-2. doi:, 10.1016/j.jmb.2020.05.024. PMID:32504625[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Powell BS, Court DL, Inada T, Nakamura Y, Michotey V, Cui X, Reizer A, Saier MH Jr, Reizer J. Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem. 1995 Mar 3;270(9):4822-39. PMID:7876255
- ↑ Dotas RR, Nguyen TT, Stewart CE Jr, Ghirlando R, Potoyan DA, Venditti V. Hybrid thermophilic/mesophilic enzymes reveal a role for conformational disorder in regulation of bacterial Enzyme I. J Mol Biol. 2020 Jun 3. pii: S0022-2836(20)30375-2. doi:, 10.1016/j.jmb.2020.05.024. PMID:32504625 doi:http://dx.doi.org/10.1016/j.jmb.2020.05.024
|