|
|
| Line 3: |
Line 3: |
| | <StructureSection load='5ngt' size='340' side='right'caption='[[5ngt]], [[Resolution|resolution]] 1.54Å' scene=''> | | <StructureSection load='5ngt' size='340' side='right'caption='[[5ngt]], [[Resolution|resolution]] 1.54Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5ngt]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NGT OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5NGT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5ngt]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NGT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5NGT FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=8WZ:7-(furan-2-yl)-5-methyl-1,3-benzoxazol-2-amine'>8WZ</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.54Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5ngr|5ngr]], [[5ngs|5ngs]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=8WZ:7-(furan-2-yl)-5-methyl-1,3-benzoxazol-2-amine'>8WZ</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5ngt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ngt OCA], [http://pdbe.org/5ngt PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5ngt RCSB], [http://www.ebi.ac.uk/pdbsum/5ngt PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5ngt ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ngt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ngt OCA], [https://pdbe.org/5ngt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ngt RCSB], [https://www.ebi.ac.uk/pdbsum/5ngt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ngt ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/8ODP_HUMAN 8ODP_HUMAN]] Antimutagenic. Acts as a sanitizing enzyme for oxidized nucleotide pools, thus suppressing cell dysfunction and death induced by oxidative stress. Hydrolyzes 8-oxo-dGTP, 8-oxo-dATP and 2-OH-dATP, thus preventing misincorporation of oxidized purine nucleoside triphosphates into DNA and subsequently preventing A:T to C:G and G:C to T:A transversions. Able to hydrolyze also the corresponding ribonucleotides, 2-OH-ATP, 8-oxo-GTP and 8-oxo-ATP.<ref>PMID:10373420</ref> <ref>PMID:10608900</ref> <ref>PMID:11139615</ref> <ref>PMID:12857738</ref> <ref>PMID:22556419</ref> | + | [https://www.uniprot.org/uniprot/8ODP_HUMAN 8ODP_HUMAN] Antimutagenic. Acts as a sanitizing enzyme for oxidized nucleotide pools, thus suppressing cell dysfunction and death induced by oxidative stress. Hydrolyzes 8-oxo-dGTP, 8-oxo-dATP and 2-OH-dATP, thus preventing misincorporation of oxidized purine nucleoside triphosphates into DNA and subsequently preventing A:T to C:G and G:C to T:A transversions. Able to hydrolyze also the corresponding ribonucleotides, 2-OH-ATP, 8-oxo-GTP and 8-oxo-ATP.<ref>PMID:10373420</ref> <ref>PMID:10608900</ref> <ref>PMID:11139615</ref> <ref>PMID:12857738</ref> <ref>PMID:22556419</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 26: |
Line 26: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| | + | [[Category: Homo sapiens]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Almlof, I]] | + | [[Category: Almlof I]] |
| - | [[Category: Berglund, U Warpman]]
| + | [[Category: Carlsson J]] |
| - | [[Category: Carlsson, J]] | + | [[Category: Gustafsson R]] |
| - | [[Category: Gustafsson, R]] | + | [[Category: Helleday T]] |
| - | [[Category: Helleday, T]] | + | [[Category: Homan E]] |
| - | [[Category: Homan, E]] | + | [[Category: Rudling A]] |
| - | [[Category: Rudling, A]] | + | [[Category: Scobie M]] |
| - | [[Category: Scobie, M]] | + | [[Category: Stenmark P]] |
| - | [[Category: Stenmark, P]] | + | [[Category: Warpman Berglund U]] |
| - | [[Category: Fragment]] | + | |
| - | [[Category: Hydrolase]]
| + | |
| - | [[Category: Inhibitor]]
| + | |
| - | [[Category: Oxidised nucleotide]]
| + | |
| Structural highlights
Function
8ODP_HUMAN Antimutagenic. Acts as a sanitizing enzyme for oxidized nucleotide pools, thus suppressing cell dysfunction and death induced by oxidative stress. Hydrolyzes 8-oxo-dGTP, 8-oxo-dATP and 2-OH-dATP, thus preventing misincorporation of oxidized purine nucleoside triphosphates into DNA and subsequently preventing A:T to C:G and G:C to T:A transversions. Able to hydrolyze also the corresponding ribonucleotides, 2-OH-ATP, 8-oxo-GTP and 8-oxo-ATP.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Fragment-based lead discovery has emerged as a leading drug development strategy for novel therapeutic targets. Although fragment-based drug discovery benefits immensely from access to atomic-resolution information, structure-based virtual screening has rarely been used to drive fragment discovery and optimization. Here, molecular docking of 0.3 million fragments to a crystal structure of cancer target MTH1 was performed. Twenty-two predicted fragment ligands, for which analogs could be acquired commercially, were experimentally evaluated. Five fragments inhibited MTH1 with IC50 values ranging from 6 to 79 muM. Structure-based optimization guided by predicted binding modes and analogs from commercial chemical libraries yielded nanomolar inhibitors. Subsequently solved crystal structures confirmed binding modes predicted by docking for three scaffolds. Structure-guided exploration of commercial chemical space using molecular docking gives access to fragment libraries that are several orders of magnitude larger than those screened experimentally and can enable efficient optimization of hits to potent leads.
Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space.,Rudling A, Gustafsson R, Almlof I, Homan E, Scobie M, Warpman Berglund U, Helleday T, Stenmark P, Carlsson J J Med Chem. 2017 Oct 3. doi: 10.1021/acs.jmedchem.7b01006. PMID:28929756[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Fujikawa K, Kamiya H, Yakushiji H, Fujii Y, Nakabeppu Y, Kasai H. The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J Biol Chem. 1999 Jun 25;274(26):18201-5. PMID:10373420
- ↑ Fujii Y, Shimokawa H, Sekiguchi M, Nakabeppu Y. Functional significance of the conserved residues for the 23-residue module among MTH1 and MutT family proteins. J Biol Chem. 1999 Dec 31;274(53):38251-9. PMID:10608900
- ↑ Fujikawa K, Kamiya H, Yakushiji H, Nakabeppu Y, Kasai H. Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res. 2001 Jan 15;29(2):449-54. PMID:11139615
- ↑ Yoshimura D, Sakumi K, Ohno M, Sakai Y, Furuichi M, Iwai S, Nakabeppu Y. An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J Biol Chem. 2003 Sep 26;278(39):37965-73. Epub 2003 Jul 10. PMID:12857738 doi:10.1074/jbc.M306201200
- ↑ Takagi Y, Setoyama D, Ito R, Kamiya H, Yamagata Y, Sekiguchi M. Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2. J Biol Chem. 2012 Jun 15;287(25):21541-9. doi: 10.1074/jbc.M112.363010. Epub 2012, May 3. PMID:22556419 doi:10.1074/jbc.M112.363010
- ↑ Rudling A, Gustafsson R, Almlof I, Homan E, Scobie M, Warpman Berglund U, Helleday T, Stenmark P, Carlsson J. Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space. J Med Chem. 2017 Oct 3. doi: 10.1021/acs.jmedchem.7b01006. PMID:28929756 doi:http://dx.doi.org/10.1021/acs.jmedchem.7b01006
|