Sandbox GGC1
From Proteopedia
(Difference between revisions)
| Line 3: | Line 3: | ||
This is a default text for your page '''Sandbox GGC1'''. Click above on '''edit this page''' to modify. Be careful with the < and > signs. | This is a default text for your page '''Sandbox GGC1'''. Click above on '''edit this page''' to modify. Be careful with the < and > signs. | ||
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | ||
| - | + | <scene name='75/752263/Nucleosome_overview/1'>nucleosome overview</scene> | |
== Function == | == Function == | ||
The Variant[https://www.uniprot.org/uniprot/P84243 histone H3] replaces H3 in a range of nucleosomes in active genes. Deposited at sites of nucleosomal displacement throughout transcribed genes which represents an epigenetic imprint of active chromatin. Nucleosomes wrap and compact DNA into chromatin. Also Histones play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling | The Variant[https://www.uniprot.org/uniprot/P84243 histone H3] replaces H3 in a range of nucleosomes in active genes. Deposited at sites of nucleosomal displacement throughout transcribed genes which represents an epigenetic imprint of active chromatin. Nucleosomes wrap and compact DNA into chromatin. Also Histones play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling | ||
Revision as of 15:02, 16 September 2020
Histone H3.3
| |||||||||||
References
1. H3C15 - Histone H3.2 - Homo sapiens (Human) - H3C15 gene & protein https://www.uniprot.org/uniprot/Q71DI3 (accessed Sep 15, 2020)
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
