6xr6

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==Abl 1b isoform active state==
==Abl 1b isoform active state==
-
<StructureSection load='6xr6' size='340' side='right'caption='[[6xr6]]' scene=''>
+
<StructureSection load='6xr6' size='340' side='right'caption='[[6xr6]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6XR6 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6XR6 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6xr6]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6XR6 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6XR6 FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6xr6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6xr6 OCA], [http://pdbe.org/6xr6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6xr6 RCSB], [http://www.ebi.ac.uk/pdbsum/6xr6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6xr6 ProSAT]</span></td></tr>
+
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ABL1, ABL, JTK7 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_protein-tyrosine_kinase Non-specific protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.2 2.7.10.2] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6xr6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6xr6 OCA], [http://pdbe.org/6xr6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6xr6 RCSB], [http://www.ebi.ac.uk/pdbsum/6xr6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6xr6 ProSAT]</span></td></tr>
</table>
</table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/ABL1_HUMAN ABL1_HUMAN]] Note=A chromosomal aberration involving ABL1 is a cause of chronic myeloid leukemia. Translocation t(9;22)(q34;q11) with BCR. The translocation produces a BCR-ABL found also in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/ABL1_HUMAN ABL1_HUMAN]] Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9. Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 acts also as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1.<ref>PMID:9037071</ref> <ref>PMID:9144171</ref> <ref>PMID:9461559</ref> <ref>PMID:10391250</ref> <ref>PMID:12379650</ref> <ref>PMID:11971963</ref> <ref>PMID:12531427</ref> <ref>PMID:12672821</ref> <ref>PMID:15556646</ref> <ref>PMID:15031292</ref> <ref>PMID:15886098</ref> <ref>PMID:15657060</ref> <ref>PMID:16943190</ref> <ref>PMID:16678104</ref> <ref>PMID:17306540</ref> <ref>PMID:17623672</ref> <ref>PMID:18328268</ref> <ref>PMID:18945674</ref> <ref>PMID:19891780</ref> <ref>PMID:20417104</ref> <ref>PMID:16424036</ref> <ref>PMID:20357770</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Protein kinases intrinsically sample a number of conformational states with distinct catalytic and binding activities. We used nuclear magnetic resonance spectroscopy to describe in atomic-level detail how Abl kinase interconverts between an active and two discrete inactive structures. Extensive differences in key structural elements between the conformational states give rise to multiple intrinsic regulatory mechanisms. The findings explain how oncogenic mutants can counteract inhibitory mechanisms to constitutively activate the kinase. Energetic dissection revealed the contributions of the activation loop, the Asp-Phe-Gly (DFG) motif, the regulatory spine, and the gatekeeper residue to kinase regulation. Characterization of the transient conformation to which the drug imatinib binds enabled the elucidation of drug-resistance mechanisms. Structural insight into inactive states highlights how they can be leveraged for the design of selective inhibitors.
 +
 +
Conformational states dynamically populated by a kinase determine its function.,Xie T, Saleh T, Rossi P, Kalodimos CG Science. 2020 Oct 9;370(6513). pii: science.abc2754. doi:, 10.1126/science.abc2754. Epub 2020 Oct 1. PMID:33004676<ref>PMID:33004676</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6xr6" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Kalodimos CG]]
+
[[Category: Non-specific protein-tyrosine kinase]]
-
[[Category: Rossi P]]
+
[[Category: Kalodimos, C G]]
-
[[Category: Saleh T]]
+
[[Category: Rossi, P]]
-
[[Category: Xie T]]
+
[[Category: Saleh, T]]
 +
[[Category: Xie, T]]
 +
[[Category: Abl kinase]]
 +
[[Category: Oncoprotein]]

Revision as of 06:16, 14 October 2020

Abl 1b isoform active state

PDB ID 6xr6

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools