6oww
From Proteopedia
(Difference between revisions)
Line 13: | Line 13: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/CASQ2_HUMAN CASQ2_HUMAN]] Calsequestrin is a high-capacity, moderate affinity, calcium-binding protein and thus acts as an internal calcium store in muscle. The release of calcium bound to calsequestrin through a calcium release channel triggers muscle contraction. The skeletal muscle isoform (CASQ1) binds around 80 Ca(2+) ions, while the cardiac isoform (CASQ2) binds approximately 60 Ca(2+) ions.<ref>PMID:17881003</ref> | [[http://www.uniprot.org/uniprot/CASQ2_HUMAN CASQ2_HUMAN]] Calsequestrin is a high-capacity, moderate affinity, calcium-binding protein and thus acts as an internal calcium store in muscle. The release of calcium bound to calsequestrin through a calcium release channel triggers muscle contraction. The skeletal muscle isoform (CASQ1) binds around 80 Ca(2+) ions, while the cardiac isoform (CASQ2) binds approximately 60 Ca(2+) ions.<ref>PMID:17881003</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Mutations in the calcium-binding protein calsequestrin cause the highly lethal familial arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but there is not yet an atomic-resolution structure of a calsequestrin filament. We report a crystal structure of a human cardiac calsequestrin filament with supporting mutational analysis and in vitro filamentation assays. We identify and characterize a new disease-associated calsequestrin mutation, S173I, that is located at the filament-forming interface, and further show that a previously reported dominant disease mutation, K180R, maps to the same surface. Both mutations disrupt filamentation, suggesting that disease pathology is due to defects in multimer formation. An ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. Our study thus provides a unifying molecular mechanism through which dominant-acting calsequestrin mutations provoke lethal arrhythmias. | ||
+ | |||
+ | The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia.,Titus EW, Deiter FH, Shi C, Wojciak J, Scheinman M, Jura N, Deo RC Nat Struct Mol Biol. 2020 Oct 12. pii: 10.1038/s41594-020-0510-9. doi:, 10.1038/s41594-020-0510-9. PMID:33046906<ref>PMID:33046906</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6oww" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 08:33, 21 October 2020
Crystal structure of a Human Cardiac Calsequestrin Filament Complexed with Ytterbium
|