|
|
Line 1: |
Line 1: |
| | | |
| ==Solution structure of CaCohA2 from Clostridium acetobutylicum== | | ==Solution structure of CaCohA2 from Clostridium acetobutylicum== |
- | <StructureSection load='6kg8' size='340' side='right'caption='[[6kg8]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='6kg8' size='340' side='right'caption='[[6kg8]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6kg8]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Cloab Cloab]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6KG8 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6KG8 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6kg8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Clostridium_acetobutylicum_ATCC_824 Clostridium acetobutylicum ATCC 824]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6KG8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6KG8 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6kg9|6kg9]], [[6kgf|6kgf]], [[6kge|6kge]], [[6kgd|6kgd]], [[6kgc|6kgc]]</td></tr> | + | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6kg8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6kg8 OCA], [https://pdbe.org/6kg8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6kg8 RCSB], [https://www.ebi.ac.uk/pdbsum/6kg8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6kg8 ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CA_C0910 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272562 CLOAB])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6kg8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6kg8 OCA], [http://pdbe.org/6kg8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6kg8 RCSB], [http://www.ebi.ac.uk/pdbsum/6kg8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6kg8 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q977Y4_CLOAB Q977Y4_CLOAB] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 21: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Cloab]] | + | [[Category: Clostridium acetobutylicum ATCC 824]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Feng, Y]] | + | [[Category: Feng Y]] |
- | [[Category: Yao, X]] | + | [[Category: Yao X]] |
- | [[Category: Beta sandwitch]]
| + | |
- | [[Category: Cellulosome]]
| + | |
- | [[Category: Cohesin]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Scaffolding]]
| + | |
| Structural highlights
Function
Q977Y4_CLOAB
Publication Abstract from PubMed
Many important proteins undergo pH-dependent conformational changes resulting in "on-off" switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from Clostridium acetobutylicum, which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180 degrees rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.
Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules.,Yao X, Chen C, Wang Y, Dong S, Liu YJ, Li Y, Cui Z, Gong W, Perrett S, Yao L, Lamed R, Bayer EA, Cui Q, Feng Y Sci Adv. 2020 Oct 23;6(43). pii: 6/43/eabd7182. doi: 10.1126/sciadv.abd7182., Print 2020 Oct. PMID:33097546[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Yao X, Chen C, Wang Y, Dong S, Liu YJ, Li Y, Cui Z, Gong W, Perrett S, Yao L, Lamed R, Bayer EA, Cui Q, Feng Y. Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules. Sci Adv. 2020 Oct 23;6(43). pii: 6/43/eabd7182. doi: 10.1126/sciadv.abd7182., Print 2020 Oct. PMID:33097546 doi:http://dx.doi.org/10.1126/sciadv.abd7182
|