Sandbox GGC2
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
Vertebrates have 3 main groups of actin isoforms, alpha, beta, and gamma. Alpha actins play a major role in muscle contraction mechanism. Beta and gamma actins are involved in the regulation of cell motility. Actin has the capability to bind with other molecules, most notably myosin and ATP, in order to carry out its function. | Vertebrates have 3 main groups of actin isoforms, alpha, beta, and gamma. Alpha actins play a major role in muscle contraction mechanism. Beta and gamma actins are involved in the regulation of cell motility. Actin has the capability to bind with other molecules, most notably myosin and ATP, in order to carry out its function. | ||
| - | This is a default text for your page '''Sandbox GGC2'''. Click above on '''edit this page''' to modify. Be careful with the < and > signs. | ||
| - | You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | ||
== Function == | == Function == | ||
Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. The main function of ACTA1 gives directions to make the alpha (a)-actin. Actins are detrimental to cell movement and the contraction of muscle fibers. They are also used to help maintain the cytoskeleton. alpha skeletal actin is an essential component of sarcomeres, which are the basic contractile unit of muscle fibers. | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. The main function of ACTA1 gives directions to make the alpha (a)-actin. Actins are detrimental to cell movement and the contraction of muscle fibers. They are also used to help maintain the cytoskeleton. alpha skeletal actin is an essential component of sarcomeres, which are the basic contractile unit of muscle fibers. | ||
== Disease == | == Disease == | ||
| - | Mutations in the human skeletal muscle alpha-actin gene (ACTA1) are associated with different muscle diseases, two of which are congenital myopathy, with an excess of thin myofilaments (actin myopathy), and nemaline myopathy. Both diseases can be identified by the abnormalities of the muscle fibers and variable degrees of muscle weakness<ref>DOI: 10.1038/13837</ref>. Congenital myopathies are a group of genetic muscle disorders that are identified with muscle weakness. | + | Mutations in the human skeletal muscle alpha-actin gene (ACTA1) are associated with different muscle diseases, two of which are congenital myopathy, with an excess of thin myofilaments (actin myopathy), and nemaline myopathy. Both diseases can be identified by the abnormalities of the muscle fibers and variable degrees of muscle weakness<ref>DOI: 10.1038/13837</ref>. Congenital myopathies are a group of genetic muscle disorders that are identified with muscle weakness. Myopathy, congenital, with fiber-type disproportion (CFTD) is a genetically heterogeneous disorder in which there is relative hypotrophy of type 1 muscle fibers compared to type 2 fibers on skeletal muscle biopsy. However, these findings are not specific and can be found in many different myopathic and neuropathic conditions <ref>DOI: 10.1002/ana.20260</ref>. Another type of mutation is in the form of actin-accumulation myopathy. This type of mutation usually changes a single amino acid. These mutations can alter the way actin binds to ATP. This is problematic as ATP provides energy for cells and is used during thin filament formation, leading to impaired muscle contractions and weakened muscles. Cap myopathy is a form of missense mutation seen in the ACTA1 gene. It is a disorder that acts on skeletal muscles. Those diagnosed with it are familiar with muscles that have been weakened and are poor in tone. The mutation replaces methionine with valine. It can be identified by cap-like structures that are made of disorganized thin filaments, leading to impaired muscle contraction and muscle weakness. |
== Relevance == | == Relevance == | ||
| - | The ACTA1 protein is a key component in various structures. One is its involvement in the actin cytoskeleton, which is a network of actin and its binding proteins that work together with microtubules and intermediate filaments that regular functions like cell migration <ref>DOI: 10.1093/hmg/ddh185</ref> | + | The ACTA1 protein is a key component in various structures. One is its involvement in the actin cytoskeleton, which is a network of actin and its binding proteins that work together with microtubules and intermediate filaments that regular functions like cell migration <ref>DOI: 10.1093/hmg/ddh185</ref>. ACTA1 is also associated with the stress fiber, a contractile actin bundle of actin filaments made of short actin filaments with alternating polarities. The skeletal alpha-actin expression is induced by stimuli and conditions known to cause muscle formation. |
== Structural highlights == | == Structural highlights == | ||
Revision as of 15:41, 4 November 2020
Actin, alpha skeletal muscle (ACTA1)
| |||||||||||
References
- ↑ Otterbein LR, Cosio C, Graceffa P, Dominguez R. Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8003-8. Epub 2002 Jun 4. PMID:12048248 doi:http://dx.doi.org/10.1073/pnas.122126299
- ↑ Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, Jacob RL, Hubner C, Oexle K, Anderson JR, Verity CM, North KN, Iannaccone ST, Muller CR, Nurnberg P, Muntoni F, Sewry C, Hughes I, Sutphen R, Lacson AG, Swoboda KJ, Vigneron J, Wallgren-Pettersson C, Beggs AH, Laing NG. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet. 1999 Oct;23(2):208-12. PMID:10508519 doi:10.1038/13837
- ↑ Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR, Kobayashi Y, Shimakawa S, Hagiwara T, Ouvrier R, Sparrow JC, Nishino I, North KN, Nonaka I. Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol. 2004 Nov;56(5):689-94. PMID:15468086 doi:10.1002/ana.20260
- ↑ Ilkovski B, Nowak KJ, Domazetovska A, Maxwell AL, Clement S, Davies KE, Laing NG, North KN, Cooper ST. Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet. 2004 Aug 15;13(16):1727-43. Epub 2004 Jun 15. PMID:15198992 doi:10.1093/hmg/ddh185
