Sandbox GGC5
From Proteopedia
(Difference between revisions)
Line 5: | Line 5: | ||
== '''Function''' == | == '''Function''' == | ||
+ | Titin, in its longest isoform, has a molecular weight exceeding 3 MDa and is over 1.5 μm in length. Titin typically contains immunoglobulin (Ig) domains which are typically 110 amino acids in length, contain an internal disulfide bond and two layers of β-pleated sheets.<ref>PMID:31856237</ref> On the cellular level, titin is typically located within the nucleus of the cell; however, it can also be located within the cytoplasm. | ||
+ | |||
Titin is a key component in the assembly and function of vertebrate striated muscles. Titin provides connections at the level of individual micro-filaments and contributes to the fine balance of forces between the two halves of the sarcomere. | Titin is a key component in the assembly and function of vertebrate striated muscles. Titin provides connections at the level of individual micro-filaments and contributes to the fine balance of forces between the two halves of the sarcomere. | ||
Line 10: | Line 12: | ||
In non-muscle cells, titin plays a role in chromosome condensation and chromosome segregation during mitosis. | In non-muscle cells, titin plays a role in chromosome condensation and chromosome segregation during mitosis. | ||
- | |||
- | On the cellular level, titin is typically located within the nucleus of the cell; however, it can also be located within the cytoplasm. | ||
Protein kinase, including titin kinase, is a vital aspect of controlling cell proliferation and cell differentiation. Titin kinase is expressed in muscles and is responsible for the interaction with thick filaments known as myosin filaments. The enzymatic activity of protein kinases must be highly regulated through the phosphorylation of specific residues located in the activation component of the catalytic domain. Titin kinase is regulated in a two-step process including the partial unfolding of an inhibitory segment to expose the catalytic region followed by the phosphorylation of the Tyrosin residue. This tyrosine residue is depicted in the structural highlights listed below. <ref>PMID:19108772</ref>,<ref>PMID:9804419</ref> | Protein kinase, including titin kinase, is a vital aspect of controlling cell proliferation and cell differentiation. Titin kinase is expressed in muscles and is responsible for the interaction with thick filaments known as myosin filaments. The enzymatic activity of protein kinases must be highly regulated through the phosphorylation of specific residues located in the activation component of the catalytic domain. Titin kinase is regulated in a two-step process including the partial unfolding of an inhibitory segment to expose the catalytic region followed by the phosphorylation of the Tyrosin residue. This tyrosine residue is depicted in the structural highlights listed below. <ref>PMID:19108772</ref>,<ref>PMID:9804419</ref> |
Revision as of 05:47, 5 November 2020
Titin
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Chatziefthimiou SD, Hornburg P, Sauer F, Mueller S, Ugurlar D, Xu ER, Wilmanns M. Structural diversity in the atomic resolution 3D fingerprint of the titin M-band segment. PLoS One. 2019 Dec 19;14(12):e0226693. doi: 10.1371/journal.pone.0226693., eCollection 2019. PMID:31856237 doi:http://dx.doi.org/10.1371/journal.pone.0226693
- ↑ Tskhovrebova L, Trinick J. Giant proteins: sensing tension with titin kinase. Curr Biol. 2008 Dec 23;18(24):R1141-2. doi: 10.1016/j.cub.2008.10.035. PMID:19108772 doi:http://dx.doi.org/10.1016/j.cub.2008.10.035
- ↑ Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Furst DO, Wilmanns M, Gautel M. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature. 1998 Oct 29;395(6705):863-9. PMID:9804419 doi:10.1038/27603
- ↑ Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M. The kinase domain of titin controls muscle gene expression and protein turnover. Science. 2005 Jun 10;308(5728):1599-603. Epub 2005 Mar 31. PMID:15802564 doi:1110463
- ↑ Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun. 1999 Aug 27;262(2):411-7. PMID:10462489 doi:10.1006/bbrc.1999.1221
- ↑ Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, Takahashi M, Hohda S, Ueda K, Nouchi T, Hiroe M, Marumo F, Imaizumi T, Yasunami M, Kimura A. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun. 2002 Feb 22;291(2):385-93. PMID:11846417 doi:10.1006/bbrc.2002.6448
- ↑ Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet. 2002 Sep;71(3):492-500. Epub 2002 Jul 26. PMID:12145747 doi:S0002-9297(07)60330-9
- ↑ Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet. 2002 Sep;71(3):492-500. Epub 2002 Jul 26. PMID:12145747 doi:S0002-9297(07)60330-9
- ↑ Carmignac V, Salih MA, Quijano-Roy S, Marchand S, Al Rayess MM, Mukhtar MM, Urtizberea JA, Labeit S, Guicheney P, Leturcq F, Gautel M, Fardeau M, Campbell KP, Richard I, Estournet B, Ferreiro A. C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann Neurol. 2007 Apr;61(4):340-51. PMID:17444505 doi:10.1002/ana.21089
- ↑ Improta S, Politou AS, Pastore A. Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure. 1996 Mar 15;4(3):323-37. PMID:8805538
- ↑ Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun. 1999 Aug 27;262(2):411-7. PMID:10462489 doi:10.1006/bbrc.1999.1221