1n57
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='1n57' size='340' side='right'caption='[[1n57]], [[Resolution|resolution]] 1.60Å' scene=''> | <StructureSection load='1n57' size='340' side='right'caption='[[1n57]], [[Resolution|resolution]] 1.60Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[1n57]] is a 1 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[1n57]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1N57 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1N57 FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | <tr id=' | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1n57 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1n57 OCA], [https://pdbe.org/1n57 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1n57 RCSB], [https://www.ebi.ac.uk/pdbsum/1n57 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1n57 ProSAT]</span></td></tr> | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/HCHA_ECOLI HCHA_ECOLI] Functions as a holding molecular chaperone (holdase) which stabilizes unfolding intermediates and rapidly releases them in an active form once stress has abated. Plays an important role in protecting cells from severe heat shock and starvation, as well as in acid resistance of stationary-phase cells. It uses temperature-induced exposure of structured hydrophobic domains to capture and stabilizes early unfolding and denatured protein intermediates under severe thermal stress. Catalyzes the conversion of methylglyoxal (MG) to D-lactate in a single glutathione (GSH)-independent step. It can also use phenylglyoxal as substrate. Glyoxalase activity protects cells against dicarbonyl stress. Displays an aminopeptidase activity that is specific against peptide substrates with alanine or basic amino acids (lysine, arginine) at N-terminus.<ref>PMID:7848303</ref> <ref>PMID:12235139</ref> <ref>PMID:12565879</ref> <ref>PMID:14731284</ref> <ref>PMID:15550391</ref> <ref>PMID:16796689</ref> <ref>PMID:17158627</ref> <ref>PMID:21696459</ref> |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 21: | Line 20: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1n57 ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1n57 ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | Heat shock proteins (Hsps) play essential protective roles under stress conditions by preventing the formation of protein aggregates and degrading misfolded proteins. EcHsp31, the yedU (hchA) gene product, is a representative member of a family of chaperones that alleviates protein misfolding by interacting with early unfolding intermediates. The 1.6-A crystal structure of the EcHsp31 dimer reveals a system of hydrophobic patches, canyons, and grooves, which may stabilize partially unfolded substrate. The presence of a well conserved, yet buried, triad in each two-domain subunit suggests a still unproven hydrolytic function of the protein. A flexible extended linker between the A and P domains may play a role in conformational flexibility and substrate binding. The alpha-beta sandwich of the EcHsp31 monomer shows structural similarity to PhPI, a protease belonging to the DJ-1 superfamily. The structure-guided sequence alignment indicates that Hsp31 homologs can be divided in three classes based on variations in the P domain that dramatically affect both oligomerization and catalytic triad formation. | ||
- | |||
- | The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad.,Quigley PM, Korotkov K, Baneyx F, Hol WG Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3137-42. Epub 2003 Mar 5. PMID:12621151<ref>PMID:12621151</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 1n57" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Escherichia coli]] |
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Baneyx | + | [[Category: Baneyx F]] |
- | [[Category: Hol | + | [[Category: Hol WGJ]] |
- | [[Category: Korotkov | + | [[Category: Korotkov K]] |
- | [[Category: Quigley | + | [[Category: Quigley PM]] |
- | + | ||
- | + |
Current revision
Crystal Structure of Chaperone Hsp31
|