Sandbox Reserved 1632
From Proteopedia
(Difference between revisions)
Line 13: | Line 13: | ||
Candida glabrata is a fungus that is able to infect a human host through the bloodstream. Unfortunately, this is a life-threatening infection for humans. By trying to understand the structure of the epithelial adhesion on the outer surface of the fungus. There could be a possibility of stopping the adhesion from attaching to the host cell and stop host cell recognition altogether. This approach could help in lowering the high amount of cases that are life-threatening as there are upwards of 29% of cases of Candida glabrata infections. | Candida glabrata is a fungus that is able to infect a human host through the bloodstream. Unfortunately, this is a life-threatening infection for humans. By trying to understand the structure of the epithelial adhesion on the outer surface of the fungus. There could be a possibility of stopping the adhesion from attaching to the host cell and stop host cell recognition altogether. This approach could help in lowering the high amount of cases that are life-threatening as there are upwards of 29% of cases of Candida glabrata infections. | ||
== Important amino acids == | == Important amino acids == | ||
- | The type of protein that we are looking at is an adhesion protein, so it does not function as an enzyme. It does not have a catalytic triad within the active site. Though there are some important amino acid residues to highlight as they interact with the ligand (lactose). In the diagram of the protein, we can look to see the all red ball stick structures by the ligand are the amino acid residues interacting with the ligand. <scene name='86/861614/Protein_view_2/5'>These would be Arg258, Asp257, Asp196, and Asp197.</scene>. They are all interacting via hydrogen bonds. | + | The type of protein that we are looking at is an adhesion protein, so it does not function as an enzyme. It does not have a catalytic triad within the active site. Though there are some important amino acid residues to highlight as they interact with the ligand (lactose). In the diagram of the protein, we can look to see the all-red ball stick structures by the ligand are the amino acid residues interacting with the ligand. <scene name='86/861614/Protein_view_2/5'>These would be Arg258, Asp257, Asp196, and Asp197.</scene>. They are all interacting via hydrogen bonds. |
== Structural highlights == | == Structural highlights == | ||
Line 20: | Line 20: | ||
== Other important features == | == Other important features == | ||
- | + | To look further into the structure studied we are going to compare two of the versions of the Epa's from the paper cited below. First looking at Epa9, this structure off to the right we can see the elongated loop 1. It was highlighted that this loop is important to the structure as it binds bigger sugars than an Epa1. It stays in an open state when bound to a bigger sugar, but as shown here it is in a more closed state as it is bound to a smaller sugar. Now looking at another structure for comparison, a mixed version of Epa9, but the only difference is that its CBL2 loop is from Epa1. | |
- | + | ||
</StructureSection> | </StructureSection> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 17:39, 2 December 2020
This Sandbox is Reserved from 09/18/2020 through 03/20/2021 for use in CHEM 351 Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, IA. This reservation includes Sandbox Reserved 1628 through Sandbox Reserved 1642. |
To get started:
More help: Help:Editing |
Your Heading Here (maybe something like 'Structure')
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644