|
|
Line 3: |
Line 3: |
| <StructureSection load='1xff' size='340' side='right'caption='[[1xff]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='1xff' size='340' side='right'caption='[[1xff]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1xff]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1gdo 1gdo]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XFF OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1XFF FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1xff]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1gdo 1gdo]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XFF OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1XFF FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=GLU:GLUTAMIC+ACID'>GLU</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1xfg|1xfg]], [[1moq|1moq]], [[1mor|1mor]], [[1mos|1mos]], [[1jxa|1jxa]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=GLU:GLUTAMIC+ACID'>GLU</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GLMS ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1xff FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xff OCA], [https://pdbe.org/1xff PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1xff RCSB], [https://www.ebi.ac.uk/pdbsum/1xff PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1xff ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutamine--fructose-6-phosphate_transaminase_(isomerizing) Glutamine--fructose-6-phosphate transaminase (isomerizing)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.16 2.6.1.16] </span></td></tr> | + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1xff FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xff OCA], [http://pdbe.org/1xff PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1xff RCSB], [http://www.ebi.ac.uk/pdbsum/1xff PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1xff ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GLMS_ECOLI GLMS_ECOLI]] Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. | + | [https://www.uniprot.org/uniprot/GLMS_ECOLI GLMS_ECOLI] Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 38: |
Line 36: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Isupov, M N]] | + | [[Category: Isupov MN]] |
- | [[Category: Teplyakov, A]] | + | [[Category: Teplyakov A]] |
- | [[Category: Glutamine amidotransferase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
GLMS_ECOLI Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
BACKGROUND: Amidotransferases use the amide nitrogen of glutamine in a number of important biosynthetic reactions. They are composed of a glutaminase domain, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, and a synthetase domain, catalyzing amination of the substrate. To gain insight into the mechanism of nitrogen transfer, we examined the structure of the glutaminase domain of glucosamine 6-phosphate synthase (GLMS). RESULTS: The crystal structures of the enzyme complexed with glutamate and with a competitive inhibitor, Glu-hydroxamate, have been determined to 1.8 A resolution. The protein fold has structural homology to other members of the superfamily of N-terminal nucleophile (Ntn) hydrolases, being a sandwich of antiparallel beta sheets surrounded by two layers of alpha helices. CONCLUSIONS: The structural homology between the glutaminase domain of GLMS and that of PRPP amidotransferase (the only other Ntn amidotransferase whose structure is known) indicates that they may have diverged from a common ancestor. Cys1 is the catalytic nucleophile in GLMS, and the nucleophilic character of its thiol group appears to be increased through general base activation by its own alpha-amino group. Cys1 can adopt two conformations, one active and one inactive; glutamine binding locks the residue in a predetermined conformation. We propose that when a nitrogen acceptor is present Cys1 is kept in the active conformation, explaining the phenomenon of substrate-induced activation of the enzyme, and that Arg26 is central in this coupling.
Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase.,Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A Structure. 1996 Jul 15;4(7):801-10. PMID:8805567[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A. Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure. 1996 Jul 15;4(7):801-10. PMID:8805567
|