Sandbox Reserved 1643

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
{{Sandbox_Reserved_ESBS20_}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE -->
{{Sandbox_Reserved_ESBS20_}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE -->
-
==Your Heading Here (maybe something like 'Structure')==
+
==PET Hydrolase==
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the &lt; and &gt; signs.
This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the &lt; and &gt; signs.
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
 +
 +
== Structure ==
== Function ==
== Function ==
Line 28: Line 30:
Circular economy is creating loops which feed resources back into the economy to make the same or new products. In general, the low production cost of plastic shows that the reuse does not offer an economic advantage.[2] However, a combination of biodegradation and biosynthesis, bio-based PET economy could contribute to an environmental advantage. A biotechnology leading to introduce PET hydrolase in the circular economy, will create PET waste and reduce its release into the environment. Bio-PET, which refers to a PET polymer that is at least partially derived from biological sources, can be produced through the microbial synthesis of terephthalic acid TPA and ethylene glycol EG. [1] This method could make a significant contribution to a sustainable and circular PET economy. However, some complexities are associated with biological TPA production and therefore, it is only EG that is produced biologically from renewable feedstocks to give bio-PET. [2]
Circular economy is creating loops which feed resources back into the economy to make the same or new products. In general, the low production cost of plastic shows that the reuse does not offer an economic advantage.[2] However, a combination of biodegradation and biosynthesis, bio-based PET economy could contribute to an environmental advantage. A biotechnology leading to introduce PET hydrolase in the circular economy, will create PET waste and reduce its release into the environment. Bio-PET, which refers to a PET polymer that is at least partially derived from biological sources, can be produced through the microbial synthesis of terephthalic acid TPA and ethylene glycol EG. [1] This method could make a significant contribution to a sustainable and circular PET economy. However, some complexities are associated with biological TPA production and therefore, it is only EG that is produced biologically from renewable feedstocks to give bio-PET. [2]
- 
- 
-
== Relevance ==
 
- 
-
== Structural highlights ==
 
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.

Revision as of 17:44, 11 January 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

PET Hydrolase

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools