Sandbox Reserved 1643

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
== PET Hydrolase ==
== PET Hydrolase ==
-
One of the world's current biggest problems is the recycling of plastic. The stability of the polymers, their crystallinity and their hydrophilic surface make recycling difficult. Polyethylene terephthalate PET is one of the most widely used plastics today (around 30 million tons per year) and its recycling is now possible thanks to PET hydrolase, an enzyme isolated from the bacteria Ideonella sakaiensis. [1]
+
One of the world's current biggest problems is the recycling of plastic. The stability of the polymers, their crystallinity and their hydrophilic surface make recycling difficult. Polyethylene terephthalate (PET) is one of the most widely used plastics today (around 30 million tons per year) and its recycling is now possible thanks to PET hydrolase, an enzyme isolated from the bacteria Ideonella sakaiensis. [1]
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
Line 12: Line 12:
== '''Function''' ==
== '''Function''' ==
-
PET hydrolase (PETase) is part of a class of enzymes called esterases. These enzymes are hydrolysing enzymes capable of cleaving esters into an acid and an alcohol, with the help of water <ref>DOI: 10.1126/science.aad6359</ref>
+
PET hydrolase (PETase) is part of a class of enzymes called esterases. These enzymes are hydrolysing enzymes capable of cleaving esters into an acid and an alcohol, with the help of water <ref>DOI: 10.1126/science.aad6359</ref><ref>DOI: 10.1007/s00253-004-1840-y</ref>. This enzyme is able to catalyse the hydrolisis of PET
-
 
+
.
== '''Applications''' ==
== '''Applications''' ==

Revision as of 21:20, 11 January 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

PET Hydrolase

One of the world's current biggest problems is the recycling of plastic. The stability of the polymers, their crystallinity and their hydrophilic surface make recycling difficult. Polyethylene terephthalate (PET) is one of the most widely used plastics today (around 30 million tons per year) and its recycling is now possible thanks to PET hydrolase, an enzyme isolated from the bacteria Ideonella sakaiensis. [1]

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016 Mar 11;351(6278):1196-9. doi: 10.1126/science.aad6359. PMID:26965627 doi:http://dx.doi.org/10.1126/science.aad6359
  4. Panda T, Gowrishankar BS. Production and applications of esterases. Appl Microbiol Biotechnol. 2005 Apr;67(2):160-9. doi: 10.1007/s00253-004-1840-y. , Epub 2005 Jan 4. PMID:15630579 doi:http://dx.doi.org/10.1007/s00253-004-1840-y
Personal tools