Sandbox Reserved 1643

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
<StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''>
-
This is a default text for your page ''''''. Click above on '''edit this page''' to modify. Be careful with the &lt; and &gt; signs.
 
-
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
 
== '''Structure''' ==
== '''Structure''' ==
Line 36: Line 34:
Circular economy is creating loops which feed resources back into the economy to make the same or new products. In general, the low production cost of plastic shows that the reuse does not offer an economic advantage <ref name="current and futur perspectives" />. However, a combination of biodegradation and biosynthesis, bio-based PET economy could contribute to an environmental advantage. A biotechnology leading to introduce PET hydrolase in the circular economy, will create PET waste and reduce its release into the environment. Bio-PET, which refers to a PET polymer that is at least partially derived from biological sources, can be produced through the microbial synthesis of terephthalic acid TPA and ethylene glycol EG <ref name="decouverte PETase" />. This method could make a significant contribution to a sustainable and circular PET economy. However, some complexities are associated with biological TPA production and therefore, it is only EG that is produced biologically from renewable feedstocks to give bio-PET <ref name="current and futur perspectives" />.
Circular economy is creating loops which feed resources back into the economy to make the same or new products. In general, the low production cost of plastic shows that the reuse does not offer an economic advantage <ref name="current and futur perspectives" />. However, a combination of biodegradation and biosynthesis, bio-based PET economy could contribute to an environmental advantage. A biotechnology leading to introduce PET hydrolase in the circular economy, will create PET waste and reduce its release into the environment. Bio-PET, which refers to a PET polymer that is at least partially derived from biological sources, can be produced through the microbial synthesis of terephthalic acid TPA and ethylene glycol EG <ref name="decouverte PETase" />. This method could make a significant contribution to a sustainable and circular PET economy. However, some complexities are associated with biological TPA production and therefore, it is only EG that is produced biologically from renewable feedstocks to give bio-PET <ref name="current and futur perspectives" />.
- 
-
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
 
</StructureSection>
</StructureSection>
== '''References''' ==
== '''References''' ==
<references/>
<references/>

Revision as of 22:49, 12 January 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

PET Hydrolase

One of the world's current biggest problems is the recycling of plastic. The stability of the polymers, their crystallinity and their hydrophilic surface make recycling difficult. Polyethylene terephthalate (PET) is one of the most widely used plastics today (around 30 million tons per year) and its recycling is now possible thanks to PET hydrolase, an enzyme isolated from the bacteria Ideonella sakaiensis [1]

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 1.3 « Découverte de la PETase, une enzyme bactérienne capable de dégrader le plastique PET (polyéthylène téréphtalate) », Quoi dans mon assiette, avr. 19, 2018. https://quoidansmonassiette.fr/decouverte-petase-enzyme-bacterienne-degrader-plastique-pet-polyethylene-terephtalate/ Retrieved 2021-01-11.
  2. 2.0 2.1 Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016 Mar 11;351(6278):1196-9. doi: 10.1126/science.aad6359. PMID:26965627 doi:http://dx.doi.org/10.1126/science.aad6359
  3. Panda T, Gowrishankar BS. Production and applications of esterases. Appl Microbiol Biotechnol. 2005 Apr;67(2):160-9. doi: 10.1007/s00253-004-1840-y. , Epub 2005 Jan 4. PMID:15630579 doi:http://dx.doi.org/10.1007/s00253-004-1840-y
  4. P. Dockrill, « Scientists Have Accidentally Created a Mutant Enzyme That Eats Plastic Waste », ScienceAlert. https://www.sciencealert.com/scientists-accidentally-engineered-mutant-enzyme-eats-through-plastic-pet-petase-pollution Retrieved 2021-01-11.
  5. Kim JW, Park SB, Tran QG, Cho DH, Choi DY, Lee YJ, Kim HS. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microb Cell Fact. 2020 Apr 28;19(1):97. doi: 10.1186/s12934-020-01355-8. PMID:32345276 doi:http://dx.doi.org/10.1186/s12934-020-01355-8
  6. Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A. 2018 Apr 17. pii: 1718804115. doi:, 10.1073/pnas.1718804115. PMID:29666242 doi:http://dx.doi.org/10.1073/pnas.1718804115
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Carr CM, Clarke DJ, Dobson ADW. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Front Microbiol. 2020 Nov 11;11:571265. doi: 10.3389/fmicb.2020.571265., eCollection 2020. PMID:33262744 doi:http://dx.doi.org/10.3389/fmicb.2020.571265
Personal tools