Sandbox Reserved 1644
From Proteopedia
(Difference between revisions)
Line 44: | Line 44: | ||
This protein has a [https://en.wikipedia.org/wiki/Proteolysis '''proteolytic'''] and [https://en.wikipedia.org/wiki/Chaperone_(protein) '''chaperone''']-like activity, it cannot unfold aggregated proteins, but can participate in the assembling of some complexes). These two enzymatic activities are separated on two polypeptide chains forming a complex or two separate domains on the same polypeptide chain. | This protein has a [https://en.wikipedia.org/wiki/Proteolysis '''proteolytic'''] and [https://en.wikipedia.org/wiki/Chaperone_(protein) '''chaperone''']-like activity, it cannot unfold aggregated proteins, but can participate in the assembling of some complexes). These two enzymatic activities are separated on two polypeptide chains forming a complex or two separate domains on the same polypeptide chain. | ||
<br> | <br> | ||
- | The Lon protein has three main distinct domains: the first, the '''N-terminal''' domain, is specialised in '''substrate binding''' and [https://en.wikipedia.org/wiki/Oligomer '''oligomerization''']. The second, called the '''AAA+ domain''' (or A domain) corresponds to the fixation and hydrolysis site of the [https://biologydictionary.net/atp/ATP ATP]. Finally, the third domain located at the '''C-terminal''' is an active serine site leading to '''substrate degradation'''. This is a [https://en.wikipedia.org/wiki/Proteolysis '''proteolytic'''] domain, called domain P. | + | The Lon protein has three main distinct domains: the first, the '''N-terminal''' domain, is specialised in '''substrate binding''' and [https://en.wikipedia.org/wiki/Oligomer '''oligomerization''']. The second, called the '''AAA+ domain''' (or A domain) corresponds to the fixation and hydrolysis site of the [https://biologydictionary.net/atp/ATP ATP]. Finally, the third domain located at the '''C-terminal''' is an active serine site leading to '''substrate degradation'''. This is a [https://en.wikipedia.org/wiki/Proteolysis '''proteolytic'''] domain, called domain P <ref>He, Lihong, Dongyang Luo, Fan Yang, Chunhao Li, Xuegong Zhang, Haiteng Deng, et Jing-Ren Zhang. « Multiple domains of bacterial and human Lon proteases define substrate selectivity ». Emerging Microbes & Infections 7 (17 août 2018). https://doi.org/10.1038/s41426-018-0148-4. |
+ | </ref>. | ||
<br> | <br> | ||
Mammalian Lon protein only interacts with '''single-stranded DNA''' (ssDNA) but not dsDNA. There are therefore special sequences for interaction with '''G-rich DNA''' as well as RNA. In addition, the binding of a substrate to the protein stimulates the interaction with the DNA. | Mammalian Lon protein only interacts with '''single-stranded DNA''' (ssDNA) but not dsDNA. There are therefore special sequences for interaction with '''G-rich DNA''' as well as RNA. In addition, the binding of a substrate to the protein stimulates the interaction with the DNA. |
Revision as of 16:55, 13 January 2021
This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664. |
To get started:
More help: Help:Editing |
2x36 - Structure of the proteolytic domain of the Human Mitochondrial Lon protease
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Bota, Daniela A., and Kelvin J. A. Davies. “Mitochondrial Lon Protease in Human Disease and Aging: Including an Etiologic Classification of Lon-Related Diseases and Disorders.” Free Radical Biology & Medicine 100 (November 2016): 188–98. https://doi.org/10.1016/j.freeradbiomed.2016.06.031.
- ↑ Lu, Bin. “Mitochondrial Lon Protease and Cancer.” Advances in Experimental Medicine and Biology 1038 (2017): 173–82. https://doi.org/10.1007/978-981-10-6674-0_12.
- ↑ Bota, Daniela A., and Kelvin J. A. Davies. “Mitochondrial Lon Protease in Human Disease and Aging: Including an Etiologic Classification of Lon-Related Diseases and Disorders.” Free Radical Biology & Medicine 100 (November 2016): 188–98. https://doi.org/10.1016/j.freeradbiomed.2016.06.031.
- ↑ García-Nafría, Javier, Gabriela Ondrovičová, Elena Blagova, Vladimir M Levdikov, Jacob A Bauer, Carolyn K Suzuki, Eva Kutejová, Anthony J Wilkinson, and Keith S Wilson. “Structure of the Catalytic Domain of the Human Mitochondrial Lon Protease: Proposed Relation of Oligomer Formation and Activity.” Protein Science : A Publication of the Protein Society 19, no. 5 (May 2010): 987–99. https://doi.org/10.1002/pro.376.
- ↑ Lu, Bin. “Mitochondrial Lon Protease and Cancer.” Advances in Experimental Medicine and Biology 1038 (2017): 173–82. https://doi.org/10.1007/978-981-10-6674-0_12.
- ↑ « The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease | Scientific Reports ». Consulté le 13 janvier 2021. https://www.nature.com/articles/srep33631.
- ↑ He, Lihong, Dongyang Luo, Fan Yang, Chunhao Li, Xuegong Zhang, Haiteng Deng, et Jing-Ren Zhang. « Multiple domains of bacterial and human Lon proteases define substrate selectivity ». Emerging Microbes & Infections 7 (17 août 2018). https://doi.org/10.1038/s41426-018-0148-4.
- ↑ Kutejová, Eva. « Mitochondrial Lon protease-unique structure and essential function in mammalian cells ». Integrative Cancer Science and Therapeutics 5, nᵒ 6 (2018). https://doi.org/10.15761/ICST.1000296.
- ↑ He, Lihong, Dongyang Luo, Fan Yang, Chunhao Li, Xuegong Zhang, Haiteng Deng, et Jing-Ren Zhang. « Multiple domains of bacterial and human Lon proteases define substrate selectivity ». Emerging Microbes & Infections 7 (17 août 2018). https://doi.org/10.1038/s41426-018-0148-4.
- ↑ Lu, Bin, Swati Yadav, Parul G. Shah, Tong Liu, Bin Tian, Sebastian Pukszta, Nerissa Villaluna, et al. « Roles for the Human ATP-Dependent Lon Protease in Mitochondrial DNA Maintenance ». Journal of Biological Chemistry 282, nᵒ 24 (15 juin 2007): 17363‑74. https://doi.org/10.1074/jbc.M611540200.