|
|
Line 3: |
Line 3: |
| <StructureSection load='2alm' size='340' side='right'caption='[[2alm]], [[Resolution|resolution]] 2.60Å' scene=''> | | <StructureSection load='2alm' size='340' side='right'caption='[[2alm]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2alm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"diplococcus_pneumoniae"_(klein_1884)_weichselbaum_1886 "diplococcus pneumoniae" (klein 1884) weichselbaum 1886]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ALM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2ALM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2alm]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptococcus_pneumoniae Streptococcus pneumoniae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ALM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2ALM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1ox0|1ox0]]</div></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">fabF ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1313 "Diplococcus pneumoniae" (Klein 1884) Weichselbaum 1886])</td></tr> | + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Beta-ketoacyl-[acyl-carrier-protein]_synthase_I Beta-ketoacyl-[acyl-carrier-protein] synthase I], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.41 2.3.1.41] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2alm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2alm OCA], [https://pdbe.org/2alm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2alm RCSB], [https://www.ebi.ac.uk/pdbsum/2alm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2alm ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2alm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2alm OCA], [https://pdbe.org/2alm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2alm RCSB], [https://www.ebi.ac.uk/pdbsum/2alm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2alm ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/Q9FBC2_STREE Q9FBC2_STREE]] Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP.[PIRNR:PIRNR000447]
| + | [https://www.uniprot.org/uniprot/Q9FBC2_STREE Q9FBC2_STREE] Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP.[PIRNR:PIRNR000447] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 39: |
Line 37: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Hurlbert, J]] | + | [[Category: Streptococcus pneumoniae]] |
- | [[Category: Rock, C O]] | + | [[Category: Hurlbert J]] |
- | [[Category: White, S W]] | + | [[Category: Rock CO]] |
- | [[Category: Zhang, Y M]] | + | [[Category: White SW]] |
- | [[Category: Beta-ketoacyl-acp synthase ii]] | + | [[Category: Zhang YM]] |
- | [[Category: Thiolase]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
Q9FBC2_STREE Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP.[PIRNR:PIRNR000447]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
beta-Ketoacyl-ACP synthases catalyze the condensation steps in fatty acid and polyketide synthesis and are targets for the development of novel antibiotics and anti-obesity and anti-cancer agents. The roles of the active site residues in Streptococcus pneumoniae FabF (beta-ketoacyl-ACP synthase II; SpFabF) were investigated to clarify the mechanism for this enzyme superfamily. The nucleophilic cysteine of the active site triad was required for acyl-enzyme formation and the overall condensation activity. The two active site histidines in the elongation condensing enzyme have different electronic states and functions. His337 is essential for condensation activity, and its protonated Nepsilon stabilizes the negative charge developed on the malonyl thioester carbonyl in the transition state. The Nepsilon of His303 accelerated catalysis by deprotonating a structured active site water for nucleophilic attack on the C3 of malonate, releasing bicarbonate. Lys332 controls the electronic state of His303 and also plays a critical role in the positioning of His337. Phe396 functions as a gatekeeper that controls the order of substrate addition. These data assign specific roles for each active site residue and lead to a revised general mechanism for this important class of enzymes.
Roles of the active site water, histidine 303, and phenylalanine 396 in the catalytic mechanism of the elongation condensing enzyme of Streptococcus pneumoniae.,Zhang YM, Hurlbert J, White SW, Rock CO J Biol Chem. 2006 Jun 23;281(25):17390-9. Epub 2006 Apr 16. PMID:16618705[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Zhang YM, Hurlbert J, White SW, Rock CO. Roles of the active site water, histidine 303, and phenylalanine 396 in the catalytic mechanism of the elongation condensing enzyme of Streptococcus pneumoniae. J Biol Chem. 2006 Jun 23;281(25):17390-9. Epub 2006 Apr 16. PMID:16618705 doi:10.1074/jbc.M513199200
|