User:Kaitlyn Roberts/Sandbox 2
From Proteopedia
(Difference between revisions)
Line 19: | Line 19: | ||
From the transition state, excess electron density on the carbonyl oxygen is collapsed back into a double bond. This causes the bond between the carbonyl carbon and sulfur to break, shifting electron density to the sulfur atom. To complete the mechanism, the negatively charged sulfur would reclaim the hydrogen from protonated H460. Acyl CoA would exit the active site as a leaving group, leaving its R group attached to cholesterol in the form of a cholesterol ester. | From the transition state, excess electron density on the carbonyl oxygen is collapsed back into a double bond. This causes the bond between the carbonyl carbon and sulfur to break, shifting electron density to the sulfur atom. To complete the mechanism, the negatively charged sulfur would reclaim the hydrogen from protonated H460. Acyl CoA would exit the active site as a leaving group, leaving its R group attached to cholesterol in the form of a cholesterol ester. | ||
It should be noted that this mechanism is largely hypothesized. Further analysis is needed to confirm the proposed steps. Additionally, the role of W420 is unclear. Mutations of W420A rendered the SOAT enzyme nonfunctional, indicating that it must be essential for catalytic activity. However, its role in the mechanism, direct or indirect, is unknown at this time. | It should be noted that this mechanism is largely hypothesized. Further analysis is needed to confirm the proposed steps. Additionally, the role of W420 is unclear. Mutations of W420A rendered the SOAT enzyme nonfunctional, indicating that it must be essential for catalytic activity. However, its role in the mechanism, direct or indirect, is unknown at this time. | ||
- | [[Image: | + | [[Image:SOATmech2.png|400 px|right|thumb|Figure 2. Mech 2]] |
Revision as of 13:38, 6 April 2021
Human Sterol O-acyltransferase
|
References
- ↑ Guan C, Niu Y, Chen SC, Kang Y, Wu JX, Nishi K, Chang CCY, Chang TY, Luo T, Chen L. Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor. Nat Commun. 2020 May 18;11(1):2478. doi: 10.1038/s41467-020-16288-4. PMID:32424158 doi:http://dx.doi.org/10.1038/s41467-020-16288-4
Student Contributors
- Kylie Pfifer
- Stepahnie Pellegrino
- Kaitlyn Roberts