Sandbox Reserved 1671
From Proteopedia
(Difference between revisions)
Line 32: | Line 32: | ||
The octantal was the best substrate with the lowest Km and the highest affinity out of all 23 substrates. | The octantal was the best substrate with the lowest Km and the highest affinity out of all 23 substrates. | ||
Ald-C is also a homodimer. | Ald-C is also a homodimer. | ||
+ | The central beta sheets are surrounded by alpha helices to form the NAD(H) binding site. | ||
== Other important features == | == Other important features == | ||
- | + | Alanine substitutions of Glu 257 and Glu 391 severely disrupted AldC activity, showing that alanine had serious effects on other amino acids found along Ald-C. | |
- | + | ||
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. | This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. | ||
Revision as of 01:00, 19 April 2021
This Sandbox is Reserved from 01/25/2021 through 04/30/2021 for use in Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1665 through Sandbox Reserved 1682. |
To get started:
More help: Help:Editing |
Ald-C
|
References
Lee, S. G., Harline, K., Abar, O., Akadri, S. O., Bastian, A. G., Chen, H. S., Duan, M., Focht, C. M., Groziak, A. R., Kao, J., Kottapalli, J. S., Leong, M. C., Lin, J. J., Liu, R., Luo, J. E., Meyer, C. M., Mo, A. F., Pahng, S. H., Penna, V., Raciti, C. D., … Jez, J. M. (2020). The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. The Journal of biological chemistry, 295(40), 13914–13926. https://doi.org/10.1074/jbc.RA120.014747
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644