Sandbox Reserved 1671
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
== Function of your protein == | == Function of your protein == | ||
- | The enzyme<scene name='87/873233/Whole_thing/2'> Ald-C</scene> is from a tomato plant. Ald-C is an aldehyde dehydrogenase which are known to preform many biological functions. This enzyme also functions as a long-chain aliphatic aldehyde dehydrogenase. It can detoxify highly reactive compounds such as aldehydes. In a plant they also help with cell wall ester biogenesis, and help plant when they feel "stress" such as dehydration or environmental changes. | + | The enzyme<scene name='87/873233/Whole_thing/2'> Ald-C</scene> is from a tomato plant. Ald-C is an aldehyde dehydrogenase which are known to preform many biological functions. This enzyme also functions as a long-chain aliphatic aldehyde dehydrogenase. It can detoxify highly reactive compounds such as aldehydes. In a plant they also help with cell wall ester biogenesis, and help plant when they feel "stress" such as dehydration or environmental changes. |
== Biological relevance and broader implications == | == Biological relevance and broader implications == | ||
- | The Pseudomonas syringae pant pathogen effects crops, it is relevant because farmers and people that work in the agriculture industry need to know of all the ways that their crops can get infected. Pseudomonas syringae makes the plants defenses against pathogens weak and it is more susceptible to get sick, by producing many different virulence factors such as parahormones, which are chemicals that are similar to the plants natural hormones but are not. Pseudomonas syringae can destroy many different plants in different environments and temperatures, it can also survive and spread through the leaves. | + | The Pseudomonas syringae pant pathogen effects crops, it is relevant because farmers and people that work in the agriculture industry need to know of all the ways that their crops can get infected. Pseudomonas syringae makes the plants defenses against pathogens weak and it is more susceptible to get sick, by producing many different virulence factors such as parahormones, which are chemicals that are similar to the plants natural hormones but are not. Pseudomonas syringae can destroy many different plants in different environments and temperatures, it can also survive and spread through the leaves. IAA (Indole-3-Acetic Acid) is a main plant hormone that is produced in the apical bud of and young leaves of plants and is known to be an inducer of cell division and elongation |
This paper is relevant to more areas in science because if someone want to make a defense chemical for Pseudomonas syringae they can use the chemistry in this paper to do so. There is a lost of valuable information that shows the chemistry, such as binding affinity. If someone is thinking about making a cure against Pseudomonas syringae they will need to know the characteristics of all the things that will bind well to it. | This paper is relevant to more areas in science because if someone want to make a defense chemical for Pseudomonas syringae they can use the chemistry in this paper to do so. There is a lost of valuable information that shows the chemistry, such as binding affinity. If someone is thinking about making a cure against Pseudomonas syringae they will need to know the characteristics of all the things that will bind well to it. | ||
- | This research paper also is useful in identifying superfamilies among different plant pathogens. | + | This research paper also is useful in identifying superfamilies among different plant pathogens. IAA is often used in horticulture to promote adventitious root growth and are used commercially to create root stem cuttings and to promote uniform fruit and flowering growth. |
Line 23: | Line 23: | ||
There are<scene name='87/873233/4_residues/1'> 4 catalytic amino acids</scene> which are essential for catalyzing the reactions and if one of them is mutated it can cause a huge effect in any enzyme. They are the ones that can preform acid base chemistry and catalyze the reaction which help it to make reactions happen appropriately. | There are<scene name='87/873233/4_residues/1'> 4 catalytic amino acids</scene> which are essential for catalyzing the reactions and if one of them is mutated it can cause a huge effect in any enzyme. They are the ones that can preform acid base chemistry and catalyze the reaction which help it to make reactions happen appropriately. | ||
there are <scene name='87/873233/Ligands/1'>2 ligands</scene> which are NAD and OYA (octantal). | there are <scene name='87/873233/Ligands/1'>2 ligands</scene> which are NAD and OYA (octantal). | ||
+ | Cystine is an important amino acid but it was mutated to an alanine, which has possibly prevented the formation of a disulfide bridge. | ||
The mutation was caused in the <scene name='87/873233/Mutant_ala_291/2'>cystine</scene> 291 position which is also one go the 4 catalytic residues. It was mutated to an alanine. | The mutation was caused in the <scene name='87/873233/Mutant_ala_291/2'>cystine</scene> 291 position which is also one go the 4 catalytic residues. It was mutated to an alanine. | ||
Line 33: | Line 34: | ||
Ald-C is also a homodimer. | Ald-C is also a homodimer. | ||
The central beta sheets are surrounded by alpha helices to form the NAD(H) binding site. | The central beta sheets are surrounded by alpha helices to form the NAD(H) binding site. | ||
+ | The C terminal region has a mixture of both alpha and betta domain, which includes the catalytic cysteine residue and forms the aldehyde – binding site. | ||
+ | Due to the mutated cystine to an alanine there may have been a disturbance in a potential disulfides bridge that happens between 2 cysteines and are essential for stability. | ||
== Other important features == | == Other important features == | ||
Line 42: | Line 45: | ||
== References == | == References == | ||
Lee, S. G., Harline, K., Abar, O., Akadri, S. O., Bastian, A. G., Chen, H. S., Duan, M., Focht, C. M., Groziak, A. R., Kao, J., Kottapalli, J. S., Leong, M. C., Lin, J. J., Liu, R., Luo, J. E., Meyer, C. M., Mo, A. F., Pahng, S. H., Penna, V., Raciti, C. D., … Jez, J. M. (2020). The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. The Journal of biological chemistry, 295(40), 13914–13926. https://doi.org/10.1074/jbc.RA120.014747 | Lee, S. G., Harline, K., Abar, O., Akadri, S. O., Bastian, A. G., Chen, H. S., Duan, M., Focht, C. M., Groziak, A. R., Kao, J., Kottapalli, J. S., Leong, M. C., Lin, J. J., Liu, R., Luo, J. E., Meyer, C. M., Mo, A. F., Pahng, S. H., Penna, V., Raciti, C. D., … Jez, J. M. (2020). The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. The Journal of biological chemistry, 295(40), 13914–13926. https://doi.org/10.1074/jbc.RA120.014747 | ||
+ | IAA (Indole-3-Acetic acid). (n.d.). Retrieved April 19, 2021, from https://www.goldbio.com/product/1311/iaa-indole-3-acetic-acid | ||
<references/> | <references/> |
Revision as of 02:57, 19 April 2021
This Sandbox is Reserved from 01/25/2021 through 04/30/2021 for use in Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1665 through Sandbox Reserved 1682. |
To get started:
More help: Help:Editing |
Ald-C
|
References
Lee, S. G., Harline, K., Abar, O., Akadri, S. O., Bastian, A. G., Chen, H. S., Duan, M., Focht, C. M., Groziak, A. R., Kao, J., Kottapalli, J. S., Leong, M. C., Lin, J. J., Liu, R., Luo, J. E., Meyer, C. M., Mo, A. F., Pahng, S. H., Penna, V., Raciti, C. D., … Jez, J. M. (2020). The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. The Journal of biological chemistry, 295(40), 13914–13926. https://doi.org/10.1074/jbc.RA120.014747 IAA (Indole-3-Acetic acid). (n.d.). Retrieved April 19, 2021, from https://www.goldbio.com/product/1311/iaa-indole-3-acetic-acid
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644