|
|
Line 3: |
Line 3: |
| <StructureSection load='1jqu' size='340' side='right'caption='[[1jqu]], [[Resolution|resolution]] 2.60Å' scene=''> | | <StructureSection load='1jqu' size='340' side='right'caption='[[1jqu]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1jqu]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Bpt4 Bpt4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JQU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JQU FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1jqu]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JQU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JQU FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CIS:(15Z)-N-((1S,2R,3E)-2-HYDROXY-1-{[(3-O-SULFO-BETA-D-GALACTOPYRANOSYL)OXY]METHYL}HEPTADEC-3-ENYL)TETRACOS-15-ENAMIDE'>CIS</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1joz|1joz]]</div></td></tr>
| + | |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">E ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10665 BPT4])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr>
| + | |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jqu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jqu OCA], [https://pdbe.org/1jqu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jqu RCSB], [https://www.ebi.ac.uk/pdbsum/1jqu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jqu ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jqu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jqu OCA], [https://pdbe.org/1jqu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jqu RCSB], [https://www.ebi.ac.uk/pdbsum/1jqu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jqu ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[https://www.uniprot.org/uniprot/LYS_BPT4 LYS_BPT4]] Helps to release the mature phage particles from the cell wall by breaking down the peptidoglycan.
| + | [https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 38: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bpt4]] | + | [[Category: Escherichia virus T4]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lysozyme]]
| + | [[Category: Baase WA]] |
- | [[Category: Baase, W A]] | + | [[Category: Martensson L-G]] |
- | [[Category: Martensson, L G]] | + | [[Category: Matthews BW]] |
- | [[Category: Matthews, B W]] | + | [[Category: Sagermann M]] |
- | [[Category: Sagermann, M]] | + | |
- | [[Category: Alpha-l motif]]
| + | |
- | [[Category: Glycine helix terminii]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Schellman motif]]
| + | |
| Structural highlights
Function
ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
alpha-helices within proteins are often terminated (capped) by distinctive configurations of the polypeptide chain. Two common arrangements are the Schellman motif and the alternative alpha(L) motif. Rose and coworkers developed stereochemical rules to identify the locations of such motifs in proteins of unknown structure based only on their amino acid sequences. To check the effectiveness of these rules, they made specific predictions regarding the structural and thermodynamic consequences of certain mutations in T4 lysozyme. We have constructed these mutants and show here that they have neither the structure nor the stability that was predicted. The results show the complexity of the protein-folding problem. Comparison of known protein structures may show that a characteristic sequence of amino acids (a sequence motif) corresponds to a conserved structural motif. In any particular protein, however, changes in other parts of the sequence may result in a different conformation. The structure is determined by sequence as a whole, not by parts considered in isolation.
A test of proposed rules for helix capping: implications for protein design.,Sagermann M, Martensson LG, Baase WA, Matthews BW Protein Sci. 2002 Mar;11(3):516-21. PMID:11847274[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
- ↑ Sagermann M, Martensson LG, Baase WA, Matthews BW. A test of proposed rules for helix capping: implications for protein design. Protein Sci. 2002 Mar;11(3):516-21. PMID:11847274
|